2021
Achieving highly efficient gene transfer to the bladder by increasing the molecular weight of polymer-based nanoparticles
Li G, He S, Schätzlein AG, Weiss RM, Martin DT, Uchegbu IF. Achieving highly efficient gene transfer to the bladder by increasing the molecular weight of polymer-based nanoparticles. Journal Of Controlled Release 2021, 332: 210-224. PMID: 33607176, DOI: 10.1016/j.jconrel.2021.02.007.Peer-Reviewed Original Research
2013
Nanoparticles for urothelium penetration and delivery of the histone deacetylase inhibitor belinostat for treatment of bladder cancer
Martin DT, Hoimes CJ, Kaimakliotis HZ, Cheng CJ, Zhang K, Liu J, Wheeler MA, Kelly WK, Tew GN, Saltzman WM, Weiss RM. Nanoparticles for urothelium penetration and delivery of the histone deacetylase inhibitor belinostat for treatment of bladder cancer. Nanomedicine Nanotechnology Biology And Medicine 2013, 9: 1124-1134. PMID: 23764660, PMCID: PMC3815967, DOI: 10.1016/j.nano.2013.05.017.Peer-Reviewed Original ResearchConceptsHistone deacetylase inhibitor belinostatBladder cancerBladder permeability barrierNon-invasive bladder cancerCultured bladder cancer cellsBladder cancer cellsChemotherapy efficacyIntravesical drug deliveryXenograft tumorsMouse bladderMouse modelConvincing dataHuman ureterBelinostatCancerCancer cellsLower IC50TumorsAcetyl-H4Tissue penetrationCLINICAL EDITORIntracellular uptakeDeliveryCellsPatients