Featured Publications
Orm family proteins mediate sphingolipid homeostasis
Breslow DK, Collins SR, Bodenmiller B, Aebersold R, Simons K, Shevchenko A, Ejsing CS, Weissman JS. Orm family proteins mediate sphingolipid homeostasis. Nature 2010, 463: 1048-1053. PMID: 20182505, PMCID: PMC2877384, DOI: 10.1038/nature08787.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAsthmaCell LineConserved SequenceFatty Acids, MonounsaturatedHeLa CellsHomeostasisHumansMolecular Sequence DataMultigene FamilyMultiprotein ComplexesPhosphoric Monoester HydrolasesPhosphorylationProtein BindingSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSerine C-PalmitoyltransferaseSphingolipidsConceptsOrm proteinsSphingolipid homeostasisSphingolipid productionFunctional genomics approachSphingolipid metabolismGenomic approachesGene familyPhosphorylation sitesORM geneORMDL genesRate-limiting enzymeRegulatory pathwaysNegative regulatorGene expressionSphingolipid synthesisSerine palmitoyltransferaseEssential roleProteinCritical mediatorGenesHomeostasisStructural componentsMetabolismMisregulationSaccharomyces
2013
Sphingolipid Homeostasis in the Endoplasmic Reticulum and Beyond
Breslow DK. Sphingolipid Homeostasis in the Endoplasmic Reticulum and Beyond. Cold Spring Harbor Perspectives In Biology 2013, 5: a013326. PMID: 23545423, PMCID: PMC3683901, DOI: 10.1101/cshperspect.a013326.BooksMeSH KeywordsAnimalsCell MembraneCeramidesEndoplasmic ReticulumHomeostasisHumansPhosphatidylinositolsSaccharomyces cerevisiaeSignal TransductionSphingolipidsConceptsSphingolipid homeostasisEndoplasmic reticulumEssential cellular rolesSphingolipid metabolismCritical regulatory sitePotent signaling moleculesCellular rolesFamily proteinsSphingolipid productionSignaling moleculesRegulatory sitesPhysiologic cuesBasic biochemistryComplex glycosphingolipidsMembrane functionHomeostasisDiverse groupSphingolipidsNew insightsReticulumMetabolic demandsDetailed understandingMetabolismStructural componentsInitial synthesis
2011
Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae
Roelants FM, Breslow DK, Muir A, Weissman JS, Thorner J. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 19222-19227. PMID: 22080611, PMCID: PMC3228448, DOI: 10.1073/pnas.1116948108.Peer-Reviewed Original ResearchConceptsProtein kinase Ypk1Orm phosphorylationSphingolipid depletionSphingolipid biosynthesisTORC2-dependent phosphorylationTemperature-sensitive growthIntegral membrane proteinsWild-type levelsOnly weak activationPrimary physiological roleMutant displaysYpk1Regulatory modificationFamily proteinsMembrane proteinsORM geneKey homeostatic regulatorsProtein kinaseSphingolipid homeostasisFirst enzymeSphingolipid productionSphingolipid synthesisEndoplasmic reticulumPhysiological rolePhosphorylation
2008
A comprehensive strategy enabling high-resolution functional analysis of the yeast genome
Breslow DK, Cameron DM, Collins SR, Schuldiner M, Stewart-Ornstein J, Newman HW, Braun S, Madhani HD, Krogan NJ, Weissman JS. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nature Methods 2008, 5: 711-718. PMID: 18622397, PMCID: PMC2756093, DOI: 10.1038/nmeth.1234.Peer-Reviewed Original ResearchConceptsGenetic interaction studiesEssential yeast genesChemical genetic screenHigh-resolution functional analysisGenetic screenYeast genesYeast genomeHypomorphic alleleSaccharomyces cerevisiaeFunctional analysisStrain collectionGrowth competitionInteraction studiesGenomeCerevisiaeGenesAllelesScreen
2006
Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise
Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 2006, 441: 840-846. PMID: 16699522, DOI: 10.1038/nature04785.Peer-Reviewed Original ResearchConceptsSingle-cell proteomic analysisBiological noiseSingle-cell resolutionProtein abundance measurementsDNA microarray analysisProtein noise levelsSingle-cell dataHigh-throughput flow cytometryProtein-specific differencesProteomic analysisS. cerevisiaeMinimal mediumProtein abundanceMicroarray analysisCellular behaviorCellular responsesProtein synthesisMessenger RNAEnvironmental changesProtein modesProtein levelsProtein expressionFlow cytometryDetailed viewRemarkable structure