2020
Comparison of PD-L1 protein expression between primary tumors and metastatic lesions in triple negative breast cancers
Rozenblit M, Huang R, Danziger N, Hegde P, Alexander B, Ramkissoon S, Blenman K, Ross JS, Rimm DL, Pusztai L. Comparison of PD-L1 protein expression between primary tumors and metastatic lesions in triple negative breast cancers. Journal For ImmunoTherapy Of Cancer 2020, 8: e001558. PMID: 33239417, PMCID: PMC7689582, DOI: 10.1136/jitc-2020-001558.Peer-Reviewed Original ResearchConceptsPD-L1 positivity ratePD-L1 positivityPD-L1 expressionDifferent metastatic sitesPrimary tumorMetastatic sitesPositivity rateImmune cellsMetastatic lesionsTumor cellsPD-L1 protein expressionTriple-negative breast cancerMore primary tumorsTriple negative breast cancer tumorsPrimary breast lesionsPrimary outcome measureSoft tissueNegative breast cancerLow positivity rateBreast cancer tumorsBone metastasesFoundation MedicineLymph nodesPD-L1Spearman correlation coefficient
2006
Quantitative In situ Analysis of β-Catenin Expression in Breast Cancer Shows Decreased Expression Is Associated with Poor Outcome
Dolled-Filhart M, McCabe A, Giltnane J, Cregger M, Camp RL, Rimm DL. Quantitative In situ Analysis of β-Catenin Expression in Breast Cancer Shows Decreased Expression Is Associated with Poor Outcome. Cancer Research 2006, 66: 5487-5494. PMID: 16707478, DOI: 10.1158/0008-5472.can-06-0100.Peer-Reviewed Original ResearchConceptsProgesterone receptorEstrogen receptorPrognostic valueBreast cancerKi-67X-tile softwareProportional hazards modelBreast cancer prognosisBreast cancer showBreast cancer tumorsΒ-catenin expressionYale Pathology archivesHazard ratioNode statusPoor outcomeTumor sizePrognostic markerWorse outcomesImmunohistochemical studyNuclear gradeCase cohortLow-level expressionPathology archivesTissue microarrayBeta-catenin expression
2003
Tissue microarray analysis of signal transducers and activators of transcription 3 (Stat3) and phospho-Stat3 (Tyr705) in node-negative breast cancer shows nuclear localization is associated with a better prognosis.
Dolled-Filhart M, Camp RL, Kowalski DP, Smith BL, Rimm DL. Tissue microarray analysis of signal transducers and activators of transcription 3 (Stat3) and phospho-Stat3 (Tyr705) in node-negative breast cancer shows nuclear localization is associated with a better prognosis. Clinical Cancer Research 2003, 9: 594-600. PMID: 12576423.Peer-Reviewed Original ResearchMeSH KeywordsAcute-Phase ProteinsBiomarkersBreast NeoplasmsCell NucleusDNA-Binding ProteinsFemaleHumansImmunohistochemistryLymphatic MetastasisMultivariate AnalysisPhosphorylationPhosphotyrosinePrognosisProportional Hazards ModelsSTAT3 Transcription FactorSurvival AnalysisTime FactorsTrans-ActivatorsConceptsNode-negative breast cancerBreast cancerCytoplasmic expressionNuclear expressionOverall survivalReceptor stainingPrognostic markerPhospho-STAT3Breast cancer tissue microarrayEstrogen receptor stainingProgesterone receptor stainingNode-negative tumorsLarge retrospective studyIndependent prognostic markerBreast cancer specimensTissue microarray analysisCancer tissue microarrayShort-term survivalTranscription 3Breast cancer tumorsHER2 stainingBetter prognosisRetrospective studyRole of STAT3Signal transducer