Featured Publications
Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase
Zhang Y, Corbett E, Wu S, Schatz DG. Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase. The EMBO Journal 2020, 39: embj2020105857. PMID: 32945578, PMCID: PMC7604617, DOI: 10.15252/embj.2020105857.Peer-Reviewed Original ResearchConceptsTarget site DNASite DNARAG1/RAG2 recombinaseSuppression of transpositionCryo-electron microscopyStrand transfer complexAntigen receptor genesDomesticated transposaseTarget DNARAG recombinaseEvolutionary adaptationPaste transpositionStructural basisTransposition activityMechanistic principlesFunctional assaysTransposon endDNAReceptor geneBase unstackingDomesticationTransposaseRecombinaseAdaptive immunityFinal stepInsights into RAG Evolution from the Identification of “Missing Link” Family A RAGL Transposons
Martin E, Le Targa L, Tsakou-Ngouafo L, Fan T, Lin C, Xiao J, Huang Z, Yuan S, Xu A, Su Y, Petrescu A, Pontarotti P, Schatz D. Insights into RAG Evolution from the Identification of “Missing Link” Family A RAGL Transposons. Molecular Biology And Evolution 2023, 40: msad232. PMID: 37850912, PMCID: PMC10629977, DOI: 10.1093/molbev/msad232.Peer-Reviewed Original ResearchConceptsJawed vertebratesTransposon familyRAG1-RAG2 recombinaseRecombination signal sequencesHemichordate Ptychodera flavaMolecular domesticationSignal sequenceP. flavaDNA bindingPtychodera flavaSequence featuresTransposition activityVertebratesTransposonCritical enzymeHinge regionGenomeDomesticationFlavaProteinPivotal stepAdaptive immunityCritical intermediateRAGRAGLStructural insights into the evolution of the RAG recombinase
Liu C, Zhang Y, Liu CC, Schatz DG. Structural insights into the evolution of the RAG recombinase. Nature Reviews Immunology 2021, 22: 353-370. PMID: 34675378, DOI: 10.1038/s41577-021-00628-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDNA Transposable ElementsEvolution, MolecularGenes, RAG-1Homeodomain ProteinsHumansRecombinasesVertebratesConceptsRAG recombinaseComparative genome analysisGenomes of eukaryotesProtein-DNA complexesSingle amino acid mutationAntigen receptor genesMolecular domesticationRag familyAmino acid mutationsJawed vertebratesVertebrate immunityTransposable elementsEvolutionary adaptationGenome analysisStructural biologyDNA bindingStructural insightsGene 1Acid mutationsCleavage activityRecombinaseReceptor geneStructural evidenceRecombinationAdaptive immunityThe RAG1 N-terminal region regulates the efficiency and pathways of synapsis for V(D)J recombination
Beilinson HA, Glynn RA, Yadavalli AD, Xiao J, Corbett E, Saribasak H, Arya R, Miot C, Bhattacharyya A, Jones JM, Pongubala JMR, Bassing CH, Schatz DG. The RAG1 N-terminal region regulates the efficiency and pathways of synapsis for V(D)J recombination. Journal Of Experimental Medicine 2021, 218: e20210250. PMID: 34402853, PMCID: PMC8374863, DOI: 10.1084/jem.20210250.Peer-Reviewed Original ResearchTransposon molecular domestication and the evolution of the RAG recombinase
Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD, Mandell JD, Pontarotti P, Petrescu AJ, Xu A, Xiong Y, Schatz DG. Transposon molecular domestication and the evolution of the RAG recombinase. Nature 2019, 569: 79-84. PMID: 30971819, PMCID: PMC6494689, DOI: 10.1038/s41586-019-1093-7.Peer-Reviewed Original ResearchConceptsRAG1-RAG2 recombinaseMolecular domesticationRAG recombinaseCryo-electron microscopy structureTwo-tiered mechanismAmino acid residuesJawed vertebratesMicroscopy structureEvolutionary adaptationDNA substratesTransposition activityAcid residuesDomesticationDNA cleavageAcidic regionDiverse repertoireAdaptive immune systemRecombinaseTransposonCell receptorTransposasePivotal eventRecombinationCleavageVertebratesStructures of a RAG-like transposase during cut-and-paste transposition
Liu C, Yang Y, Schatz DG. Structures of a RAG-like transposase during cut-and-paste transposition. Nature 2019, 575: 540-544. PMID: 31723264, PMCID: PMC6872938, DOI: 10.1038/s41586-019-1753-7.Peer-Reviewed Original ResearchConceptsCryo-electron microscopy structureC-terminal tailUnique structural elementsStrand transfer complexEukaryotic cutEvolutionary progenitorsMicroscopy structureRAG recombinasePaste transpositionApo enzymeSubstrate DNAHelicoverpa zeaConformational changesEarly stepsTransposaseAdaptive immune systemDNATarget siteTransposonTarget DNAPivotal roleActive siteEnzymeTransposition processEssential component
2021
RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination
Gan T, Wang Y, Liu Y, Schatz DG, Hu J. RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination. Cell Reports 2021, 37: 109824. PMID: 34644584, PMCID: PMC8783374, DOI: 10.1016/j.celrep.2021.109824.Peer-Reviewed Original ResearchSarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for V(D)J recombination
Chen CC, Chen BR, Wang Y, Curman P, Beilinson HA, Brecht RM, Liu CC, Farrell RJ, de Juan-Sanz J, Charbonnier LM, Kajimura S, Ryan TA, Schatz DG, Chatila TA, Wikstrom JD, Tyler JK, Sleckman BP. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for V(D)J recombination. Journal Of Experimental Medicine 2021, 218: e20201708. PMID: 34033676, PMCID: PMC8155808, DOI: 10.1084/jem.20201708.Peer-Reviewed Original ResearchConceptsRAG2 gene expressionSarco/endoplasmic reticulum Ca2Gene expressionEndoplasmic reticulum Ca2ER Ca2ER transmembrane proteinExpression of SERCA3Mature B cellsER lumenCytosolic Ca2Transmembrane proteinCRISPR/PreB cellsDNA cleavageB cellsReticulum Ca2SERCA proteinATPase activityProteinProfound blockATP2A2 mutationsRAG1Recombination
2020
Nucleolar localization of RAG1 modulates V(D)J recombination activity
Brecht RM, Liu CC, Beilinson HA, Khitun A, Slavoff SA, Schatz DG. Nucleolar localization of RAG1 modulates V(D)J recombination activity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 4300-4309. PMID: 32047031, PMCID: PMC7049140, DOI: 10.1073/pnas.1920021117.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAnimalsCell NucleolusCells, CulturedHomeodomain ProteinsMicePrecursor Cells, B-LymphoidProtein TransportV(D)J RecombinationConceptsNucleolar localizationProximity-dependent biotin identificationRecombination activityDisruption of nucleoliDiscrete gene segmentsAntigen receptor lociPre-B cell linesNegative regulatory mechanismsN-terminal regionAmino acids 216Biotin identificationLocalization motifNucleolar associationProtein complexesNucleolar proteinsNucleolar sequestrationT-cell receptor genesRegulatory mechanismsNucleolar markerReceptor locusEfficient egressRAG1Amino acidsGene segmentsReceptor gene
2019
Intra-Vκ Cluster Recombination Shapes the Ig Kappa Locus Repertoire
Shinoda K, Maman Y, Canela A, Schatz DG, Livak F, Nussenzweig A. Intra-Vκ Cluster Recombination Shapes the Ig Kappa Locus Repertoire. Cell Reports 2019, 29: 4471-4481.e6. PMID: 31875554, PMCID: PMC8214342, DOI: 10.1016/j.celrep.2019.11.088.Peer-Reviewed Original ResearchConceptsDNA double-strand breaksRecombination signal sequencesVκ gene segmentsGene segmentsDouble-strand breaksVariable gene segmentsRAG proteinsSignal sequenceV-J rearrangementRecombination eventsSpacer regionVκ-JκRecombinationLevels of breakageComplete absenceProteinLarge fractionDeletionJκSequence
2017
Immature Lymphocytes Inhibit Rag1 and Rag2 Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks
Fisher MR, Rivera-Reyes A, Bloch NB, Schatz DG, Bassing CH. Immature Lymphocytes Inhibit Rag1 and Rag2 Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks. The Journal Of Immunology 2017, 198: 2943-2956. PMID: 28213501, PMCID: PMC5360515, DOI: 10.4049/jimmunol.1601639.Peer-Reviewed Original ResearchConceptsDNA double-strand breaksDNA damage responseRAG1/RAG2Double-strand breaksRAG DNA double-strand breaksMultiple genomic locationsTranscription of genesNF-κB transcription factorsDSB responseGenomic integrityGenomic locationATM kinaseTranscriptional repressionRAG cleavageCellular functionsDamage responseLocus recombinationMammalian cellsRAG1 proteinTranscription factorsModulator proteinRAG expressionAtaxia telangiectasiaTranscriptional inhibitionDevelopmental stagesNew insights into the evolutionary origins of the recombination‐activating gene proteins and V(D)J recombination
Carmona LM, Schatz DG. New insights into the evolutionary origins of the recombination‐activating gene proteins and V(D)J recombination. The FEBS Journal 2017, 284: 1590-1605. PMID: 27973733, PMCID: PMC5459667, DOI: 10.1111/febs.13990.Peer-Reviewed Original ResearchConceptsTransposable elementsEvolutionary originRAG proteinsAbsence of RAG2Independent evolutionary originsBasal chordate amphioxusRecombination-activating gene (RAG) proteinsFamily of transposasesAntigen receptor genesRAG transposonChordate amphioxusJawed vertebratesSequence similarityEvolutionary relativesProteins RAG1RAG genesGene proteinRAG1Gene segmentsDiverse arrayMechanistic linkProteinRAG2Adaptive immune systemDNA cleavage reaction
2016
RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2
Maman Y, Teng G, Seth R, Kleinstein SH, Schatz DG. RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2. Nucleic Acids Research 2016, 44: 9624-9637. PMID: 27436288, PMCID: PMC5175335, DOI: 10.1093/nar/gkw633.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesChromatinChromatin ImmunoprecipitationGenomeGenomic InstabilityHigh-Throughput Nucleotide SequencingHistonesHomeodomain ProteinsHumansMiceNucleotide MotifsPromoter Regions, GeneticProtein BindingProtein Interaction Domains and MotifsRecombination, GeneticV(D)J RecombinationConceptsAntigen receptor lociNon-core regionsReceptor locusPlant homeodomain (PHD) fingerChIP-seq dataWide bindingChromatin interactionsAdditional chromatinLysine 4Off-target activityGenomic featuresHistone 3Novel roleRAG1LociChromatinGenomeRAG2Observed patternsDistinct modesBindingH3K4me3H3K27acEndonucleaseRelative contributionModeling altered T-cell development with induced pluripotent stem cells from patients with RAG1-dependent immune deficiencies
Brauer PM, Pessach IM, Clarke E, Rowe JH, Ott de Bruin L, Lee YN, Dominguez-Brauer C, Comeau AM, Awong G, Felgentreff K, Zhang YH, Bredemeyer A, Al-Herz W, Du L, Ververs F, Kennedy M, Giliani S, Keller G, Sleckman BP, Schatz DG, Bushman FD, Notarangelo LD, Zúñiga-Pflücker JC. Modeling altered T-cell development with induced pluripotent stem cells from patients with RAG1-dependent immune deficiencies. Blood 2016, 128: 783-793. PMID: 27301863, PMCID: PMC4982452, DOI: 10.1182/blood-2015-10-676304.Peer-Reviewed Original ResearchConceptsInduced pluripotent stem cellsT cell developmentPluripotent stem cellsT cell receptorStem cellsOmenn syndrome patientsSingle-strand DNA breaksHuman induced pluripotent stem cellsControl iPSCsDeep-sequencing analysisT lineage cellsHuman T-cell developmentT cell progenitorsIPSC-derived cellsJoining genesImpaired T-cell differentiationDNA breaksSame geneN-terminalImmune system developmentLocus rearrangementT cell differentiationPatient cellsRecombination activityGenetic defectsDiscovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination
Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, Le Petillon Y, Liu X, Chen S, Schatz DG, Xu A. Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination. Cell 2016, 166: 102-114. PMID: 27293192, PMCID: PMC5017859, DOI: 10.1016/j.cell.2016.05.032.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDNA Transposable ElementsDNA-Binding ProteinsEvolution, MolecularHomeodomain ProteinsLanceletsTerminal Repeat SequencesV(D)J RecombinationConceptsRAG transposonAntigen receptor gene assemblyBasal extant chordateDNA transposon familiesVertebrate adaptive immunityRecombination signal sequencesExtant chordatesTarget site duplicationsTransposable elementsDNA recombinationSignal sequenceTransposon excisionGene assemblyProtoRAGTransposon familySite duplicationsCrucial eventTransposonRecombinationAdaptive immunityChordatesTIRLanceletsRAG1/2GermlineCollaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination
Carmona LM, Fugmann SD, Schatz DG. Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination. Genes & Development 2016, 30: 909-917. PMID: 27056670, PMCID: PMC4840297, DOI: 10.1101/gad.278432.116.Peer-Reviewed Original ResearchConceptsRecombination-activating gene 1Transib transposaseAbsence of RAG2RAG1/RAG2Antigen receptor genesJawed vertebratesRAG2 proteinsTransposable elementsRAG1 proteinRegulatory featuresDNA substratesGene 1RAG2Receptor geneRecombination activityProteinRecombinationTransposaseAdaptive immunityVertebratesTransposonGenesEvolutionLow levelsOrigin
2015
Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination
Shetty K, Schatz DG. Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination. Molecular And Cellular Biology 2015, 35: 3701-3713. PMID: 26303526, PMCID: PMC4589606, DOI: 10.1128/mcb.00219-15.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineChromatinDNADNA CleavageDNA-Binding ProteinsHomeodomain ProteinsMiceProtein BindingV(D)J RecombinationConceptsConserved heptamerRAG2 proteinsChromatin immunoprecipitationNonamer elementsRecombination substratesSignal sequenceNonamer sequencesMutant formsCryptic RSSsRAG1DNA cleavageGene segmentsChromatinCell linesRAG2ProteinRecruitmentRecombinationSequenceMajor roleMutagenesisImmunoprecipitationRepeatsRSSsRAGChromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes
Hu J, Zhang Y, Zhao L, Frock RL, Du Z, Meyers RM, Meng FL, Schatz DG, Alt FW. Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes. Cell 2015, 163: 947-959. PMID: 26593423, PMCID: PMC4660266, DOI: 10.1016/j.cell.2015.10.016.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCCCTC-Binding FactorChromosomes, MammalianDNA-Binding ProteinsGenes, mycGenomeHigh-Throughput Nucleotide SequencingHomeodomain ProteinsHumansImmunoglobulin Heavy ChainsLymphomaMiceNucleotide MotifsRegulatory Sequences, Nucleic AcidRepressor ProteinsSequence Analysis, DNATranslocation, GeneticV(D)J RecombinationConceptsRecombination signal sequencesRSS pairAntigen receptor genesSignal sequenceRAG activityDNA breaksChromosomal loopsLoop domainBiological processesConvergent CTCFChromosomal translocationsCleavage siteReceptor geneTarget activitySuch breaksMarked orientation dependenceRecombinationRAGCTCFChromatinMegabasesOff-target distributionGenesBreaksDomainRAG Represents a Widespread Threat to the Lymphocyte Genome
Teng G, Maman Y, Resch W, Kim M, Yamane A, Qian J, Kieffer-Kwon KR, Mandal M, Ji Y, Meffre E, Clark MR, Cowell LG, Casellas R, Schatz DG. RAG Represents a Widespread Threat to the Lymphocyte Genome. Cell 2015, 162: 751-765. PMID: 26234156, PMCID: PMC4537821, DOI: 10.1016/j.cell.2015.07.009.Peer-Reviewed Original ResearchConceptsRecombination signalsStrong recombination signalGenome stabilityHuman genomeActive promotersGenomeDNA damageChromosomal translocationsCleavage siteWidespread threatRAG1Lymphocyte genomeEvolutionary struggleRecombinationRAGChromatinPromoterEndonucleaseSitesRAG2TranslocationAbundanceDepletionEnhancerHeptamerMechanisms of clonal evolution in childhood acute lymphoblastic leukemia
Swaminathan S, Klemm L, Park E, Papaemmanuil E, Ford A, Kweon SM, Trageser D, Hasselfeld B, Henke N, Mooster J, Geng H, Schwarz K, Kogan SC, Casellas R, Schatz DG, Lieber MR, Greaves MF, Müschen M. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nature Immunology 2015, 16: 766-774. PMID: 25985233, PMCID: PMC4475638, DOI: 10.1038/ni.3160.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAnimalsAntibody DiversityB-LymphocytesChildChild, PreschoolClonal EvolutionCytidine DeaminaseDNA-Binding ProteinsFemaleFlow CytometryHomeodomain ProteinsHumansImmunoblottingInfantMaleMice, Inbred NODMice, KnockoutMice, SCIDMice, TransgenicMicroscopy, FluorescencePrecursor Cell Lymphoblastic Leukemia-LymphomaPrecursor Cells, B-LymphoidReverse Transcriptase Polymerase Chain ReactionTumor Cells, Cultured