2023
3108 – PHOSPHORYLATION OF RUNX1 PROMOTES MEGAKARYOCYTIC FATE IN MEGAKARYOCYTE-ERYTHROID PROGENITOR FATE SPECIFICATION
Kwon N, Lu Y, Thompson E, Wang L, Zhang P, Krause D. 3108 – PHOSPHORYLATION OF RUNX1 PROMOTES MEGAKARYOCYTIC FATE IN MEGAKARYOCYTE-ERYTHROID PROGENITOR FATE SPECIFICATION. Experimental Hematology 2023, 124: s104. DOI: 10.1016/j.exphem.2023.06.215.Peer-Reviewed Original ResearchMegakaryocyte-erythroid progenitorsFate specificationHEL cellsGene expressionSingle-cell RNA-seq dataPost-translational modificationsDifferential gene expressionRNA-seq dataChromatin localizationRNA-seqPhosphorylation statusRUNX1 overexpressionE progenitorsTranscriptional activityKey regulatorRUNX1 mRNAMK progenitorsT residuesGenesErythroid progenitorsRUNX1MKPProgenitorsProtein levelsSpecification mechanism
2017
SNP in human ARHGEF3 promoter is associated with DNase hypersensitivity, transcript level and platelet function, and Arhgef3 KO mice have increased mean platelet volume
Zou S, Teixeira AM, Kostadima M, Astle WJ, Radhakrishnan A, Simon LM, Truman L, Fang JS, Hwa J, Zhang PX, van der Harst P, Bray PF, Ouwehand WH, Frontini M, Krause DS. SNP in human ARHGEF3 promoter is associated with DNase hypersensitivity, transcript level and platelet function, and Arhgef3 KO mice have increased mean platelet volume. PLOS ONE 2017, 12: e0178095. PMID: 28542600, PMCID: PMC5441597, DOI: 10.1371/journal.pone.0178095.Peer-Reviewed Original ResearchConceptsExpression quantitative lociMK maturationGene expressionRho guanine exchange factorsHuman megakaryocytesGenome-wide association studiesDNase I hypersensitive regionGuanine exchange factorHuman genetic studiesExchange factorReporter mouse modelDNase hypersensitivityQuantitative lociPlatelet traitsMK developmentTranscript levelsCausal SNPsHypersensitive regionARHGEF3Human phenotypesAssociation studiesGenetic studiesHematopoietic subpopulationsGenetic variantsSNPs
2012
MKL1 and MKL2 play redundant and crucial roles in megakaryocyte maturation and platelet formation
Smith EC, Thon JN, Devine MT, Lin S, Schulz VP, Guo Y, Massaro SA, Halene S, Gallagher P, Italiano JE, Krause DS. MKL1 and MKL2 play redundant and crucial roles in megakaryocyte maturation and platelet formation. Blood 2012, 120: 2317-2329. PMID: 22806889, PMCID: PMC3447785, DOI: 10.1182/blood-2012-04-420828.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine DiphosphateAnimalsBleeding TimeBlood PlateletsBone Marrow CellsCells, CulturedCrosses, GeneticCytoplasmCytoskeletonGene Expression ProfilingHematopoiesisMegakaryocytesMiceMice, Inbred C57BLMice, KnockoutOligonucleotide Array Sequence AnalysisPlatelet ActivationThrombocytopeniaTrans-ActivatorsTranscription FactorsConceptsMegakaryocyte maturationPlatelet formationSerum response factorSerum response factor expressionMembrane organizationGene expressionMKL1MKL2Response factorDKO miceKO backgroundMegakaryocyte compartmentMegakaryocytesCritical roleMegakaryocyte ploidyExpressionMaturationKnockout miceFactor expressionCrucial roleHomologuesGenesMiceProlonged bleeding timeRole
2010
SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis
Yu L, Ji W, Zhang H, Renda MJ, He Y, Lin S, Cheng EC, Chen H, Krause DS, Min W. SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis. Journal Of Experimental Medicine 2010, 207: 1183-1195. PMID: 20457756, PMCID: PMC2882842, DOI: 10.1084/jem.20092215.Peer-Reviewed Original ResearchConceptsSmall ubiquitin-like modifier (SUMO) modificationImportant regulatory mechanismEmbryonic day 13.5Down-regulation correlatesFetal liverCre-loxP systemEmbryonic lethalityProtein functionDefinitive erythropoiesisGene promoterDNA bindingRegulatory mechanismsGene expressionGATA1SENP1Fetal liver cellsProtein analysisDay 13.5Global deletionProteinSubsequent erythropoiesisKnockout miceErythropoiesisLiver cellsDeSUMOylation
2009
Dynamics of α-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34+ cells in culture
Mahajan MC, Karmakar S, Newburger PE, Krause DS, Weissman SM. Dynamics of α-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34+ cells in culture. Experimental Hematology 2009, 37: 1143-1156.e3. PMID: 19607874, PMCID: PMC2997688, DOI: 10.1016/j.exphem.2009.07.001.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-GlobinsAntigens, CD34CCCTC-Binding FactorCells, CulturedChromatin Assembly and DisassemblyEnhancer Elements, GeneticErythroid Precursor CellsErythropoiesisErythropoietinGATA1 Transcription FactorGene Expression Regulation, DevelopmentalGlycophorinsHematopoietic Cell Growth FactorsHistonesHumansInsulator ElementsNF-E2 Transcription Factor, p45 SubunitProtein BindingRepressor ProteinsRNA Polymerase IITranscription FactorsConceptsAlpha-globin lociTranscription factor recruitmentChromatin structureGATA-1Transcription factorsErythroid differentiationGene expressionFactor recruitmentPol IIQuantitative polymerase chain reaction analysisAlpha-globin gene expressionKey erythroid transcription factorsErythroid transcription factorsNF-E2Chromatin immunoprecipitation-quantitative polymerase chain reaction analysisAlpha-globin genesUpstream activator sitesBeta-like genesPolymerase chain reaction analysisChain reaction analysisStages of erythropoiesisGlobin promoterDifferent differentiation stagesFactor CTCFHistone modifications
2007
Lung‐specific nuclear reprogramming is accompanied by heterokaryon formation and Y chromosome loss following bone marrow transplantation and secondary inflammation
Herzog EL, Van Arnam J, Hu B, Zhang J, Chen Q, Haberman AM, Krause DS. Lung‐specific nuclear reprogramming is accompanied by heterokaryon formation and Y chromosome loss following bone marrow transplantation and secondary inflammation. The FASEB Journal 2007, 21: 2592-2601. PMID: 17449722, DOI: 10.1096/fj.06-7861com.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Marrow TransplantationChromosome DeletionFemaleInflammationIntercellular Signaling Peptides and ProteinsMaleMiceMice, KnockoutPeptidesPostoperative ComplicationsPulmonary Surfactant-Associated Protein CTransplantation ChimeraTransplantation ConditioningWhole-Body IrradiationY ChromosomeConceptsTransplanted bone marrow-derived cellsY chromosomeHeterokaryon formationBone marrow-derived cellsLung-specific gene expressionGene expression patternsSurfactant protein CY chromosome lossNuclear reprogrammingSP-C mRNAChromosome lossExpression patternsGene expressionCell fusionSP-C deficiencyChromosomesReprogrammingSpNonhematopoietic cellsWild-type marrowMarrow-derived cellsCellsProtein CProteinFusion
2004
Lineage specificity of gene expression patterns
Kluger Y, Tuck DP, Chang JT, Nakayama Y, Poddar R, Kohya N, Lian Z, Nasr A, Halaban HR, Krause DS, Zhang X, Newburger PE, Weissman SM. Lineage specificity of gene expression patterns. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 6508-6513. PMID: 15096607, PMCID: PMC404075, DOI: 10.1073/pnas.0401136101.Peer-Reviewed Original ResearchConceptsGene expression patternsExpression patternsExpression dataGene Ontology databaseTree of relationshipsStem cellsBroad functional categoriesHematopoietic cell populationsMRNA expression dataHematopoietic programBioCarta databasesGenome databaseLineage choiceHematopoietic stem cellsKyoto EncyclopediaDifferent lineagesFunctional categoriesLineage developmentCell lineagesGene expressionLineage specificityOligonucleotide microarraysFunctional pathwaysLineage discriminationOntology database
2002
Marrow-Derived Cells as Vehicles for Delivery of Gene Therapy to Pulmonary Epithelium
Grove JE, Lutzko C, Priller J, Henegariu O, Theise ND, Kohn DB, Krause DS. Marrow-Derived Cells as Vehicles for Delivery of Gene Therapy to Pulmonary Epithelium. American Journal Of Respiratory Cell And Molecular Biology 2002, 27: 645-651. PMID: 12444022, DOI: 10.1165/rcmb.2002-0056rc.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Marrow TransplantationFemaleGene ExpressionGenetic TherapyGreen Fluorescent ProteinsHematopoietic Stem Cell TransplantationIndicators and ReagentsLuminescent ProteinsLung DiseasesMiceMice, Inbred C57BLProtein PrecursorsProteolipidsRespiratory MucosaRetroviridaeRNA, MessengerConceptsBone marrow-derived stem cellsLung epithelial cellsLung epitheliumEpithelial cellsMarrow-derived stem cellsGene therapyBMSC transplantationLung diseaseFemale miceAirway epitheliumAlveolar spaceLong-term transgene expressionMale marrowPulmonary epitheliumLong-term gene expressionGene therapy applicationsGene expressionPulmonary airwaysAdenoviral vectorEpitheliumMarrowTherapyTransient gene expressionNonviral vectorsStem cellsDevelopment of a murine hematopoietic progenitor complementary DNA microarray using a subtracted complementary DNA library
Ma X, Husain T, Peng H, Lin S, Mironenko O, Maun N, Johnson S, Tuck D, Berliner N, Krause DS, Perkins AS. Development of a murine hematopoietic progenitor complementary DNA microarray using a subtracted complementary DNA library. Blood 2002, 100: 833-844. PMID: 12130493, DOI: 10.1182/blood.v100.3.833.Peer-Reviewed Original ResearchConceptsMyeloid cell differentiationCell differentiationCDNA libraryGene expressionPrimary murine bone marrow cellsSignal transduction genesTypes of genesMurine bone marrow cellsComplementary DNA cloneGenomewide expression analysisStem cell differentiationComplementary DNA libraryComplementary DNA microarrayEML cellsTransduction genesHematopoietic genesUncharacterized ESTsSequence tagsDistinct genesDNA libraryDNA clonesTranscription factorsBone marrow-derived progenitorsExpression analysisDNA microarrays
2000
Regulation of CD34 transcription by Sp1 requires sites upstream and downstream of the transcription start site
Taranenko N, Krause D. Regulation of CD34 transcription by Sp1 requires sites upstream and downstream of the transcription start site. Experimental Hematology 2000, 28: 974-984. PMID: 10989198, DOI: 10.1016/s0301-472x(00)00492-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD34Antigens, NuclearBinding SitesDNADNA HelicasesDNA MethylationDNA ProbesDNA-Binding ProteinsGene Expression RegulationGuanineKu AutoantigenMiceNuclear ProteinsPromoter Regions, GeneticSp1 Transcription FactorTranscription FactorsTranscription, GeneticTransfectionTumor Cells, CulturedUntranslated RegionsConceptsTranscription start sitePromoter activityCD34 promoterStart siteDrosophila S2 cellsHematopoietic cellsTranscription factor bindsDNA binding sitesElectromobility shift assaysSequence-specific mannerS2 cellsTranscriptional regulationMolecular regulationMethylation interferenceDeletion analysisEarly hematopoiesisNuclear proteinsRegulatory regionsFactor bindsShift assaysGene expressionUntranslated regionHematopoietic stemSp1CD34 transcription
1997
Multilineage gene expression precedes commitment in the hemopoietic system.
Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C, Enver T. Multilineage gene expression precedes commitment in the hemopoietic system. Genes & Development 1997, 11: 774-785. PMID: 9087431, DOI: 10.1101/gad.11.6.774.Peer-Reviewed Original ResearchConceptsGene expression programsMultilineage gene expressionLineage specificationExpression programsGene activityLocus activationMultipotential stateGene expressionCytokine receptorsHemopoietic stemGranulocytic lineageProgenitor cellsSingle-cell RT-PCRSame cellsHemopoietic systemRT-PCRExclusive commitmentCell RT-PCRCellsLineagesCoexpressionDifferentiationExpressionStemActivation