2021
Methylation of dual-specificity phosphatase 4 controls cell differentiation
Su H, Jiang M, Senevirathne C, Aluri S, Zhang T, Guo H, Xavier-Ferrucio J, Jin S, Tran NT, Liu SM, Sun CW, Zhu Y, Zhao Q, Chen Y, Cable L, Shen Y, Liu J, Qu CK, Han X, Klug CA, Bhatia R, Chen Y, Nimer SD, Zheng YG, Iancu-Rubin C, Jin J, Deng H, Krause DS, Xiang J, Verma A, Luo M, Zhao X. Methylation of dual-specificity phosphatase 4 controls cell differentiation. Cell Reports 2021, 36: 109421. PMID: 34320342, PMCID: PMC9110119, DOI: 10.1016/j.celrep.2021.109421.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnimalsArginineCell DifferentiationCell LineChildDual-Specificity PhosphatasesEnzyme StabilityFemaleHEK293 CellsHumansMaleMAP Kinase Signaling SystemMegakaryocytesMethylationMice, Inbred C57BLMiddle AgedMitogen-Activated Protein Kinase PhosphatasesMyelodysplastic SyndromesP38 Mitogen-Activated Protein KinasesPolyubiquitinProtein-Arginine N-MethyltransferasesProteolysisRepressor ProteinsUbiquitinationYoung AdultConceptsDual-specificity phosphataseCell differentiationSingle-cell transcriptional analysisP38 MAPKControls cell differentiationE3 ligase HUWE1Knockdown screeningMK differentiationTranscriptional analysisMegakaryocyte differentiationProtein kinaseP38 axisP38 activationPRMT1Transcriptional signatureContext of thrombocytopeniaMK cellsMechanistic insightsPharmacological inhibitionDifferentiationMethylationMAPKPhosphataseUbiquitinylationActivation
2019
A versatile flow-based assay for immunocyte-mediated cytotoxicity
Rabinovich PM, Zhang J, Kerr SR, Cheng BH, Komarovskaya M, Bersenev A, Hurwitz ME, Krause DS, Weissman SM, Katz SG. A versatile flow-based assay for immunocyte-mediated cytotoxicity. Journal Of Immunological Methods 2019, 474: 112668. PMID: 31525367, PMCID: PMC6891822, DOI: 10.1016/j.jim.2019.112668.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorCell NucleusCytotoxicity Tests, ImmunologicCytotoxicity, ImmunologicFlow CytometryHigh-Throughput Screening AssaysHumansImmunotherapy, AdoptiveKiller Cells, NaturalLymphocytes, Tumor-InfiltratingMaleMelanomaMice, Inbred C57BLPredictive Value of TestsReceptors, Chimeric AntigenReproducibility of ResultsSkin NeoplasmsTime FactorsT-LymphocytesWorkflowConceptsCell-mediated cytotoxicityTumor-Infiltrating LymphocytesEffector cellsTarget cellsNK-92 cellsChimeric antigen receptorNuclear staining patternInfiltrating lymphocytesT cellsEffector nucleiFlow-based assayImmune systemFlow cytometryStaining patternAntigen receptorDead cellsKilling reactionCytotoxicityCell permeable dyeCellsAssaysCell mixturesNuclear proteinsNovel strategyCell proteinsAdult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy
Tal R, Shaikh S, Pallavi P, Tal A, López-Giráldez F, Lyu F, Fang YY, Chinchanikar S, Liu Y, Kliman HJ, Alderman M, Pluchino N, Kayani J, Mamillapalli R, Krause DS, Taylor HS. Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy. PLOS Biology 2019, 17: e3000421. PMID: 31513564, PMCID: PMC6742226, DOI: 10.1371/journal.pbio.3000421.Peer-Reviewed Original ResearchConceptsBM transplantsDecidual cellsPregnancy lossMesenchymal stem cellsAdult bone marrow progenitorsDecidualization-related genesBone marrow progenitorsAdult bone marrowWT donorsPhysiologic contributionSuccessful pregnancyBMDC recruitmentStromal expansionImmune cellsEndometrial cellsDeficient miceUterine expressionUterine tissueDecidual stromaPregnancyBone marrowNonhematopoietic cellsBMDCsHemochorial placentaMarrow progenitorsMKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation
Hu X, Liu ZZ, Chen X, Schulz VP, Kumar A, Hartman AA, Weinstein J, Johnston JF, Rodriguez EC, Eastman AE, Cheng J, Min L, Zhong M, Carroll C, Gallagher PG, Lu J, Schwartz M, King MC, Krause DS, Guo S. MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications 2019, 10: 1695. PMID: 30979898, PMCID: PMC6461646, DOI: 10.1038/s41467-019-09636-6.Peer-Reviewed Original ResearchConceptsCell fate reprogrammingChromatin accessibilityActin cytoskeletonSomatic cell reprogrammingPluripotency transcription factorsGlobal chromatin accessibilityGenomic accessibilityCytoskeleton (LINC) complexCell reprogrammingCytoskeletal genesTranscription factorsReprogrammingPluripotencyChromatinCytoskeletonMKL1Unappreciated aspectPathwayNuclear volumeNucleoskeletonSUN2CellsActivationGenesExpression
2017
SNP in human ARHGEF3 promoter is associated with DNase hypersensitivity, transcript level and platelet function, and Arhgef3 KO mice have increased mean platelet volume
Zou S, Teixeira AM, Kostadima M, Astle WJ, Radhakrishnan A, Simon LM, Truman L, Fang JS, Hwa J, Zhang PX, van der Harst P, Bray PF, Ouwehand WH, Frontini M, Krause DS. SNP in human ARHGEF3 promoter is associated with DNase hypersensitivity, transcript level and platelet function, and Arhgef3 KO mice have increased mean platelet volume. PLOS ONE 2017, 12: e0178095. PMID: 28542600, PMCID: PMC5441597, DOI: 10.1371/journal.pone.0178095.Peer-Reviewed Original ResearchConceptsExpression quantitative lociMK maturationGene expressionRho guanine exchange factorsHuman megakaryocytesGenome-wide association studiesDNase I hypersensitive regionGuanine exchange factorHuman genetic studiesExchange factorReporter mouse modelDNase hypersensitivityQuantitative lociPlatelet traitsMK developmentTranscript levelsCausal SNPsHypersensitive regionARHGEF3Human phenotypesAssociation studiesGenetic studiesHematopoietic subpopulationsGenetic variantsSNPs
2013
Whole-exome sequencing identifies a novel somatic mutation in MMP8 associated with a t(1;22)-acute megakaryoblastic leukemia
Kim Y, Schulz VP, Satake N, Gruber TA, Teixeira AM, Halene S, Gallagher PG, Krause DS. Whole-exome sequencing identifies a novel somatic mutation in MMP8 associated with a t(1;22)-acute megakaryoblastic leukemia. Leukemia 2013, 28: 945-948. PMID: 24157583, PMCID: PMC3981934, DOI: 10.1038/leu.2013.314.Peer-Reviewed Original ResearchReduced Caveolin-1 Promotes Hyperinflammation due to Abnormal Heme Oxygenase-1 Localization in Lipopolysaccharide-Challenged Macrophages with Dysfunctional Cystic Fibrosis Transmembrane Conductance Regulator
Zhang PX, Murray TS, Villella VR, Ferrari E, Esposito S, D'Souza A, Raia V, Maiuri L, Krause DS, Egan ME, Bruscia EM. Reduced Caveolin-1 Promotes Hyperinflammation due to Abnormal Heme Oxygenase-1 Localization in Lipopolysaccharide-Challenged Macrophages with Dysfunctional Cystic Fibrosis Transmembrane Conductance Regulator. The Journal Of Immunology 2013, 190: 5196-5206. PMID: 23606537, PMCID: PMC3711148, DOI: 10.4049/jimmunol.1201607.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAnimalsCaveolin 1Cells, CulturedChildChild, PreschoolCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorFemaleHeme Oxygenase-1HumansInflammationLipopolysaccharidesLung DiseasesMacrophagesMaleMembrane ProteinsMiceMice, KnockoutNasal PolypsReactive Oxygen SpeciesSignal TransductionToll-Like Receptor 4Young AdultConceptsCav-1 expressionHeme oxygenase-1Dysfunctional cystic fibrosis transmembrane conductance regulatorCystic fibrosis transmembrane conductance regulatorCell surfaceFibrosis transmembrane conductance regulatorProtein caveolin-1Cellular redox statusCell surface localizationCellular oxidative stateTransmembrane conductance regulatorHO-1 enzymePositive feed-forward loopCystic fibrosis macrophagesNegative regulatorCaveolin-1Conductance regulatorCell survivalHO-1 deliverySurface localizationRedox statusMΦ responsesHO-1/CO pathwayPathwayPotential target
2012
Successful collection and engraftment of autologous peripheral blood progenitor cells in poorly mobilized patients receiving high‐dose granulocyte colony‐stimulating factor
Cooper DL, Proytcheva M, Medoff E, Seropian SE, Snyder EL, Krause DS, Wu Y. Successful collection and engraftment of autologous peripheral blood progenitor cells in poorly mobilized patients receiving high‐dose granulocyte colony‐stimulating factor. Journal Of Clinical Apheresis 2012, 27: 235-241. PMID: 22566214, DOI: 10.1002/jca.21232.Peer-Reviewed Original ResearchConceptsHigh-dose G-CSFAutologous HPC transplantationHematopoietic progenitor cellsG-CSFHPC transplantationProgenitor cellsAutologous peripheral blood progenitor cell collectionHigh-dose granulocyte colony-stimulating factorAutologous peripheral blood progenitor cellsRetrospective medical record reviewPeripheral blood progenitor cell collectionPeripheral blood progenitor cellsMedical record reviewGranulocyte-colony stimulating factorGranulocyte colony-stimulating factorBlood progenitor cellsEfficacy of mobilizationProgenitor cell harvestsProgenitor cell collectionColony-stimulating factorPlatelet engraftmentRecord reviewSafety profileGood mobilizersPeripheral blood
2011
Increased Tubular Proliferation as an Adaptive Response to Glomerular Albuminuria
Guo JK, Marlier A, Shi H, Shan A, Ardito TA, Du ZP, Kashgarian M, Krause DS, Biemesderfer D, Cantley LG. Increased Tubular Proliferation as an Adaptive Response to Glomerular Albuminuria. Journal Of The American Society Of Nephrology 2011, 23: 429-437. PMID: 22193389, PMCID: PMC3294312, DOI: 10.1681/asn.2011040396.Peer-Reviewed Original ResearchMeSH KeywordsAlbuminuriaAnimalsAxl Receptor Tyrosine KinaseCell ProliferationDisease Models, AnimalFemaleHeparin-binding EGF-like Growth FactorIntegrasesIntercellular Signaling Peptides and ProteinsIntracellular Signaling Peptides and ProteinsKidney GlomerulusKidney Tubules, ProximalMaleMembrane ProteinsMiceMice, TransgenicPodocytesProteinuriaProto-Oncogene ProteinsReceptor Protein-Tyrosine KinasesConceptsGlomerular proteinuriaTubular injuryTubular proliferationStructural glomerular injuryProteinuric renal diseaseOnset of albuminuriaRenal tubular atrophyDiphtheria toxin receptorRenal tubular cellsProximal tubule cellsGlomerular albuminuriaRenal failureSystemic inflammationTubular damageProgressive glomerulosclerosisRenal diseaseTubular atrophyGlomerular injuryRenal responsePodocyte lossProliferative responseTubular cellsAnimal modelsProteinuriaReceptor AxlTargeted Gene Modification of Hematopoietic Progenitor Cells in Mice Following Systemic Administration of a PNA-peptide Conjugate
Rogers FA, Lin SS, Hegan DC, Krause DS, Glazer PM. Targeted Gene Modification of Hematopoietic Progenitor Cells in Mice Following Systemic Administration of a PNA-peptide Conjugate. Molecular Therapy 2011, 20: 109-118. PMID: 21829173, PMCID: PMC3255600, DOI: 10.1038/mt.2011.163.Peer-Reviewed Original ResearchConceptsGene modificationGene therapyHematopoietic stem cell gene therapyStem cell gene therapyGenomic modificationsVivo gene therapyCell gene therapyTargeted gene modificationVivo gene modificationHematopoietic progenitor cellsPeptide nucleic acidSystemic administrationBone marrowGene-targeting strategiesProgenitor cellsPrimary recipient miceStem cell mobilizationEx vivo manipulationSickle cell anemiaLymphoid cell lineagesDonor miceRecipient miceHematologic disordersInvasive alternativeCell mobilizationTissue‐engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel
Hibino N, Villalona G, Pietris N, Duncan DR, Schoffner A, Roh JD, Yi T, Dobrucki LW, Mejias D, Sawh‐Martinez R, Harrington JK, Sinusas A, Krause DS, Kyriakides T, Saltzman WM, Pober JS, Shin'oka T, Breuer CK. Tissue‐engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel. The FASEB Journal 2011, 25: 2731-2739. PMID: 21566209, PMCID: PMC3136337, DOI: 10.1096/fj.11-182246.Peer-Reviewed Original ResearchConceptsBone marrow-derived mononuclear cellsSmooth muscle cellsAutologous bone marrow-derived mononuclear cellsMarrow-derived mononuclear cellsMuscle cellsAnalogous mouse modelsAdjacent blood vesselsHuman bone marrow-derived mononuclear cellsMononuclear cellsClinical trialsMouse recipientsImmunodeficient miceComposite graftMouse modelBone marrowMacrophage invasionCell originChimeric hostGraftBlood vesselsHost cell originHost macrophagesNeovessel formationVessel wallNeovessels
2010
Serum response factor is an essential transcription factor in megakaryocytic maturation
Halene S, Gao Y, Hahn K, Massaro S, Italiano JE, Schulz V, Lin S, Kupfer GM, Krause DS. Serum response factor is an essential transcription factor in megakaryocytic maturation. Blood 2010, 116: 1942-1950. PMID: 20525922, PMCID: PMC3173990, DOI: 10.1182/blood-2010-01-261743.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBleeding TimeBlood PlateletsBone Marrow CellsCell DifferentiationCell LineageCells, CulturedCytoskeletonFemaleFlow CytometryGene Expression ProfilingLuminescent ProteinsMaleMegakaryocytesMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMicroscopy, Electron, TransmissionPlatelet CountPlatelet Factor 4Reverse Transcriptase Polymerase Chain ReactionSerum Response FactorThrombocytopeniaTranscription FactorsConceptsSerum response factorCytoskeletal genesTranscription factorsMADS-box transcription factorsRole of SRFNormal megakaryocyte maturationAbnormal actin distributionResponse factorEssential transcription factorNormal Mendelian frequencyMegakaryocyte developmentMuscle differentiationPF4-Cre miceStress fibersMegakaryocyte maturationMegakaryocytic maturationActin distributionMegakaryocytic lineageMendelian frequencyMegakaryocyte progenitorsVivo assaysCFU-MKGenesPlatelet productionCritical role
2008
Chimeric mice reveal clonal development of pancreatic acini, but not islets
Swenson ES, Xanthopoulos J, Nottoli T, McGrath J, Theise ND, Krause DS. Chimeric mice reveal clonal development of pancreatic acini, but not islets. Biochemical And Biophysical Research Communications 2008, 379: 526-531. PMID: 19116141, PMCID: PMC2657659, DOI: 10.1016/j.bbrc.2008.12.104.Peer-Reviewed Original ResearchConceptsStem/progenitor cellsMultiple progenitorsAdult mouse small intestineMale ES cellsProgenitor cellsFemale blastocystsCrypt stem cellsClonal descendantsES cellsY chromosomeChimeric miceFemale cellsIntestinal crypt stem cellsExocrine pancreatic aciniFemale epithelial cellsClonal developmentStem cellsSitu hybridizationMouse small intestineEpithelial cellsIntestinal cryptsProgenitorsPancreatic aciniCellsPancreatic isletsHepatocyte Nuclear Factor‐1 as Marker of Epithelial Phenotype Reveals Marrow‐Derived Hepatocytes, but Not Duct Cells, After Liver Injury in Mice
Swenson ES, Guest I, Ilic Z, Mazzeo‐Helgevold M, Lizardi P, Hardiman C, Sell S, Krause DS. Hepatocyte Nuclear Factor‐1 as Marker of Epithelial Phenotype Reveals Marrow‐Derived Hepatocytes, but Not Duct Cells, After Liver Injury in Mice. Stem Cells 2008, 26: 1768-1777. PMID: 18467658, PMCID: PMC2846397, DOI: 10.1634/stemcells.2008-0148.Peer-Reviewed Original ResearchConceptsMarrow-derived epithelial cellsHepatocyte nuclear factor 1Y chromosomeNuclear factor 1Ductal progenitor cellsLiver injuryInflammatory cellsFemale miceProgenitor cellsEpithelial cellsFactor 1Male bone marrowStable hematopoietic engraftmentBone marrow originColocalization of GFPNuclear markersBone marrow cellsDuctal progenitorsHematopoietic engraftmentChromosomesBone marrowMarrow originPancytokeratin stainingCholangiocyte phenotypeMarrow cells
2007
Limitations of Green Fluorescent Protein as a Cell Lineage Marker
Swenson ES, Price JG, Brazelton T, Krause DS. Limitations of Green Fluorescent Protein as a Cell Lineage Marker. Stem Cells 2007, 25: 2593-2600. PMID: 17615263, DOI: 10.1634/stemcells.2007-0241.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood CellsCattleCell LineageChickensCytomegalovirusFemaleFluorescent Antibody TechniqueGene ExpressionGenes, ReporterGenes, SyntheticGreen Fluorescent ProteinsHumansImmunoenzyme TechniquesMaleMiceMice, Inbred C57BLOrgan SpecificityRegulatory Sequences, Nucleic AcidTissue DistributionTransgenesVisceraConceptsSmall intestineMouse strainsPeripheral blood cellsTransgenic mouse strainReporter mouse strainPrimary rabbit antibodiesDonor originHuman ubiquitin C promoterImmunohistochemical stainingSolid organsCell lineage markersCell lineagesUBC-GFP miceUbiquitin C promoterChicken beta-actinFlow cytometryBlood cellsEnhanced green fluorescent protein (EGFP) reporterMiceOne-tissueAdult liverTissue sectionsIntestineLineage markersRabbit antibodiesBone Marrow Contributes to Epithelial Cancers in Mice and Humans as Developmental Mimicry
Cogle CR, Theise ND, Fu D, Ucar D, Lee S, Guthrie SM, Lonergan J, Rybka W, Krause DS, Scott EW. Bone Marrow Contributes to Epithelial Cancers in Mice and Humans as Developmental Mimicry. Stem Cells 2007, 25: 1881-1887. PMID: 17478582, DOI: 10.1634/stemcells.2007-0163.Peer-Reviewed Original ResearchConceptsEpithelial cancersEpithelial neoplasiaHematopoietic stem cellsNeoplastic environmentStem cellsHematopoietic cell transplantationBone marrow cellsHuman marrowMarrow involvementMarrow cellsSmall bowelCell transplantationLung neoplasiaMouse modelBone marrowMimicryDistant organsNeoplasiaCancerMarrowStable fusionCellsPhenotypeInductionBowelLung‐specific nuclear reprogramming is accompanied by heterokaryon formation and Y chromosome loss following bone marrow transplantation and secondary inflammation
Herzog EL, Van Arnam J, Hu B, Zhang J, Chen Q, Haberman AM, Krause DS. Lung‐specific nuclear reprogramming is accompanied by heterokaryon formation and Y chromosome loss following bone marrow transplantation and secondary inflammation. The FASEB Journal 2007, 21: 2592-2601. PMID: 17449722, DOI: 10.1096/fj.06-7861com.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Marrow TransplantationChromosome DeletionFemaleInflammationIntercellular Signaling Peptides and ProteinsMaleMiceMice, KnockoutPeptidesPostoperative ComplicationsPulmonary Surfactant-Associated Protein CTransplantation ChimeraTransplantation ConditioningWhole-Body IrradiationY ChromosomeConceptsTransplanted bone marrow-derived cellsY chromosomeHeterokaryon formationBone marrow-derived cellsLung-specific gene expressionGene expression patternsSurfactant protein CY chromosome lossNuclear reprogrammingSP-C mRNAChromosome lossExpression patternsGene expressionCell fusionSP-C deficiencyChromosomesReprogrammingSpNonhematopoietic cellsWild-type marrowMarrow-derived cellsCellsProtein CProteinFusion
2006
Engraftment of Donor‐Derived Epithelial Cells in Multiple Organs Following Bone Marrow Transplantation into Newborn Mice
Bruscia EM, Ziegler EC, Price JE, Weiner S, Egan ME, Krause DS. Engraftment of Donor‐Derived Epithelial Cells in Multiple Organs Following Bone Marrow Transplantation into Newborn Mice. Stem Cells 2006, 24: 2299-2308. PMID: 16794262, DOI: 10.1634/stemcells.2006-0166.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBone Marrow TransplantationCystic Fibrosis Transmembrane Conductance RegulatorEpithelial CellsFemaleFluorescent Antibody TechniqueHematopoietic Stem Cell TransplantationIn Situ Hybridization, FluorescenceMaleMiceMice, Inbred C57BLMice, Inbred StrainsMice, TransgenicRNA, MessengerY ChromosomeConceptsBone marrow-derived cellsMarrow-derived epithelial cellsBone marrow transplantationNewborn miceEpithelial cellsMarrow transplantationGI tractBone marrow-derived epithelial cellsDonor-derived epithelial cellsDoses of busulfanMarrow-derived cellsEngraftment of donorIrradiated adult recipientsMyeloablative regimenPreparative regimenAdult recipientsDifferent regimensEngrafted miceHematopoietic engraftmentGastrointestinal tractSurvival advantageTherapeutic benefitAdult miceMultiple organsBone marrowThreshold of Lung Injury Required for the Appearance of Marrow‐Derived Lung Epithelia
Herzog EL, Van Arnam J, Hu B, Krause DS. Threshold of Lung Injury Required for the Appearance of Marrow‐Derived Lung Epithelia. Stem Cells 2006, 24: 1986-1992. PMID: 16868209, DOI: 10.1634/stemcells.2005-0579.Peer-Reviewed Original ResearchConceptsBone marrow-derived cellsBone marrow transplantationLung injuryMarrow transplantationLung epitheliumEngraftment of BMDCsLocal host factorsSex-mismatched bone marrow transplantationMarrow-derived cellsType II pneumocytesMyeloablative radiationLung damageHematopoietic chimerismEpithelial chimerismApparent injuryInjuryTransplantationHost factorsEpitheliumEpithelial cellsEpithelial phenotypeLungChimerismPneumocytesPhenotypic changes
2005
Integration of engrafted Schwann cells into injured peripheral nerve: Axonal association and nodal formation on regenerated axons
Radtke C, Akiyama Y, Lankford KL, Vogt PM, Krause DS, Kocsis JD. Integration of engrafted Schwann cells into injured peripheral nerve: Axonal association and nodal formation on regenerated axons. Neuroscience Letters 2005, 387: 85-89. PMID: 16084645, PMCID: PMC2605373, DOI: 10.1016/j.neulet.2005.06.073.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxotomyCell Adhesion Molecules, NeuronalCell CompartmentationCytoplasmDisease Models, AnimalFemaleGreen Fluorescent ProteinsImmunohistochemistryMaleMiceMice, Inbred C57BLMicroscopy, Electron, TransmissionMyelin SheathNAV1.6 Voltage-Gated Sodium ChannelNerve RegenerationNerve Tissue ProteinsPeripheral Nerve InjuriesPeripheral NervesRanvier's NodesSchwann CellsSciatic NeuropathySodium ChannelsY ChromosomeConceptsWild-type miceSchwann cellsMyelin-forming cellsRegenerated axonsSodium channelsType miceRegenerated peripheral nerve fibersFemale wild-type miceDonor cellsMale donor cellsPeripheral nerve fibersSciatic nerve axonsImmuno-electron microscopic analysisCrush injuryCrush sitePeripheral nervesDonor originMale miceNerve fibersNerve axonsNodal formationAxonsNerveMiceAxonal associations