2021
Cell Boundaries, How Membranes and Their Proteins Work
White S, von Heijne G, Engelman D. Cell Boundaries, How Membranes and Their Proteins Work. 2021 DOI: 10.1201/9780429341328.Peer-Reviewed Original ResearchHigh-resolution micrographsMembrane proteinsMolecular mechanismsOrganization of lipidsBasic physicsWide arrayCell membranePhysicsProteinCentral discoveryBiologyPhysics studentsMembraneBiophysical foundationConcerted useCell boundariesDiscoveryPhysical chemistryAdvanced undergraduateDiagramArrayFoldingOrganizational principlesStructureMicrographs
2011
First Step in Folding of Nonconstitutive Membrane Proteins: Spontaneous Insertion of a Polypeptide into a Lipid Bilayer and Formation of Helical Structure
Karabadzhak A, Weerakkody D, Thakur M, Anderson M, Engelman D, Andreev O, Markin V, Reshetnyak Y. First Step in Folding of Nonconstitutive Membrane Proteins: Spontaneous Insertion of a Polypeptide into a Lipid Bilayer and Formation of Helical Structure. Biophysical Journal 2011, 100: 346a. DOI: 10.1016/j.bpj.2010.12.2088.Peer-Reviewed Original Research
2001
The Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions
Senes A, Ubarretxena-Belandia I, Engelman D. The Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 9056-9061. PMID: 11481472, PMCID: PMC55372, DOI: 10.1073/pnas.161280798.Peer-Reviewed Original ResearchConceptsMembrane protein structuresMembrane protein foldingTransmembrane helix associationTransmembrane helix interactionsHelix-helix interactionsTransmembrane helicesProtein foldingPacking interfaceHelix associationHelix interactionsProtein structureDeterminants of stabilityCalphaStructural motifsHelixSerineFoldingMotifHydrogen bondsImportant determinantInteractionGlycophorinSpecificityCαDeterminants
2000
HELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTION
Popot J, Engelman D. HELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTION. Annual Review Of Biochemistry 2000, 69: 881-922. PMID: 10966478, DOI: 10.1146/annurev.biochem.69.1.881.Peer-Reviewed Original ResearchInterhelical hydrogen bonding drives strong interactions in membrane proteins
Xiao Zhou F, Cocco M, Russ W, Brunger A, Engelman D. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nature Structural & Molecular Biology 2000, 7: 154-160. PMID: 10655619, DOI: 10.1038/72430.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAsparagineCell MembraneChloramphenicol O-AcetyltransferaseCircular DichroismDetergentsDimerizationDNA-Binding ProteinsElectrophoresis, Polyacrylamide GelFungal ProteinsGlycophorinsHydrogen BondingLeucine ZippersMagnetic Resonance SpectroscopyMembrane ProteinsMicellesMicrococcal NucleaseMolecular Sequence DataPeptidesProtein ConformationProtein KinasesProtein Structure, SecondaryRecombinant ProteinsSaccharomyces cerevisiae ProteinsConceptsMembrane proteinsHelix associationTransmembrane α-helicesIntegral membrane proteinsInterhelical hydrogen bondingModel transmembrane helixTransmembrane helicesMembrane helicesGCN4 leucine zipperLeucine zipperPolar residuesSoluble proteinHydrophobic leucineΑ-helixBiological membranesProteinHelixNon-specific interactionsValine (HAV) sequenceMembraneZipperFoldingMotifAsparagineResiduesDesign of single-layer β-sheets without a hydrophobic core
Koide S, Huang X, Link K, Koide A, Bu Z, Engelman D. Design of single-layer β-sheets without a hydrophobic core. Nature 2000, 403: 456-460. PMID: 10667801, DOI: 10.1038/35000255.Peer-Reviewed Original ResearchConceptsSingle-layer β-sheetΒ-sheetHydrophobic coreΒ-sheet segmentsProtein foldingHydrogen-deuterium exchangeOuter surface protein AΒ-sheet structureChemical denaturationSmall-angle X-rayProtein AFoldingMain thermodynamic driving forceSurface protein ABorrelia burgdorferiNuclear magnetic resonanceThermodynamic driving forceMisfoldingNonpolar moietiesHydrophobic effectSolvent resultsProteinAdjacent unitsDenaturationVariants
1998
Structure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerization
MacKenzie K, Engelman D. Structure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerization. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 3583-3590. PMID: 9520409, PMCID: PMC19879, DOI: 10.1073/pnas.95.7.3583.Peer-Reviewed Original ResearchConceptsHelix-helix interactionsTransmembrane helix-helix associationTransmembrane helix-helix interactionsHelix-helix associationSingle-point mutantsStructure-based predictionTransmembrane domainMembrane proteinsDimer interfaceDimerization propensitySide-chain hydrophobicityDimer stabilityPoint mutationsSteric clashesMultiple mutationsMutationsSequence dependenceCompensatory effectFavorable van der Waals interactionsMutantsFoldingProteinInteractionDimerizationGlycophorin
1997
A Biophysical Study of Integral Membrane Protein Folding †
Hunt J, Earnest T, Bousché O, Kalghatgi K, Reilly K, Horváth C, Rothschild K, Engelman D. A Biophysical Study of Integral Membrane Protein Folding †. Biochemistry 1997, 36: 15156-15176. PMID: 9398244, DOI: 10.1021/bi970146j.Peer-Reviewed Original ResearchConceptsAlpha-helical integral membrane proteinsIntegral membrane proteinsMembrane proteinsIntegral membrane protein foldingMembrane protein foldingNon-native conformationsStable secondary structureCellular chaperonesBiophysical dissectionBeta-sheet structureProtein foldingIndividual polypeptidesBiophysical studiesStructure of bacteriorhodopsinTertiary structureSecondary structureReconstitution protocolsG helicesPolypeptideF helixProteinPhospholipid vesiclesHelixFoldingBacteriorhodopsin
1995
Helix-helix interactions inside membranes
Engelman D, Adair B, Brunger A, Hunt J, Kahn T, Lemmon M, MacKenzie K, Treutlein H. Helix-helix interactions inside membranes. Molecular And Cell Biology Updates 1995, 297-310. DOI: 10.1007/978-3-0348-9057-1_21.Peer-Reviewed Original Research
1994
Specificity and promiscuity in membrane helix interactions
Lemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. FEBS Letters 1994, 346: 17-20. PMID: 8206151, DOI: 10.1016/0014-5793(94)00467-6.Peer-Reviewed Original ResearchSpecificity and promiscuity in membrane helix interactions
Lemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. Quarterly Reviews Of Biophysics 1994, 27: 157-218. PMID: 7984776, DOI: 10.1017/s0033583500004522.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsTransmembrane α-helicesMembrane proteinsΑ-helixMembrane protein foldingMembrane-spanning portionTransmembrane helix associationHelix-helix interactionsParticular helicesProtein foldingHelix associationHelix interactionsProsthetic groupLipid bilayersCharge-charge interactionsStereochemical fitFoldingProteinAccessible statesSpecificityOligomerizationInteractionPromiscuityHelixAssemblyA dimerization motif for transmembrane α–helices
Lemmon M, Treutlein H, Adams P, Brünger A, Engelman D. A dimerization motif for transmembrane α–helices. Nature Structural & Molecular Biology 1994, 1: 157-163. PMID: 7656033, DOI: 10.1038/nsb0394-157.Peer-Reviewed Original ResearchConceptsTransmembrane α-helicesHydrophobic transmembrane α-helicesSpecific helix-helix interactionsΑ-helixIntegral membrane proteinsHelix-helix interactionsHelix-helix interfaceDimerization motifSpecific dimerizationMembrane proteinsHelix associationFunctional analysisAmino acidsSuch motifsLipid bilayersMotifParticular motifsFoldingDimerizationSuch interactionsComplex membranesProteinOligomerizationVariety of systemsInteraction
1992
Intramembrane Helix-Helix Association in Oligomerization and Transmembrane Signaling
Bormann B, Engelman D. Intramembrane Helix-Helix Association in Oligomerization and Transmembrane Signaling. Annual Review Of Biophysics 1992, 21: 223-242. PMID: 1326354, DOI: 10.1146/annurev.bb.21.060192.001255.Peer-Reviewed Original ResearchConceptsProtein foldingTransmembrane regionReceptor proteinClose contact sitesSignal transductionQuaternary structureReceptor moleculesConformational changesHelical transmembrane regionsAllosteric conformational changeHelix-helix associationConformational change modelTertiary/quaternary structureTransmembrane helicesTransmembrane domainMechanism of insertionCytoplasmic domainTransmembrane signalingContact sitesPrimary structureSecondary structureProteinOligomerizationFoldingProteolytic fragments
1990
Membrane protein folding and oligomerization: the two-stage model.
Popot J, Engelman D. Membrane protein folding and oligomerization: the two-stage model. Biochemistry 1990, 29: 4031-7. PMID: 1694455, DOI: 10.1021/bi00469a001.Peer-Reviewed Original ResearchConceptsMembrane protein foldingIntegral membrane proteinsMembrane proteinsProtein foldingMembrane protein subunitsTransmembrane segmentsTransmembrane structureSequence dataProtein subunitsVariety of functionsAqueous channelsLipid bilayersFoldingProteinSubunitsOligomerizationAssemblyFragmentsBilayers
1988
Bacteriorhodopsin in and out of Shape: Experimental Evidence in Favor of a Two-Stage Mechanism for Integral Membrane Protein Folding
Popot J, Engelman D. Bacteriorhodopsin in and out of Shape: Experimental Evidence in Favor of a Two-Stage Mechanism for Integral Membrane Protein Folding. Jerusalem Symposia 1988, 21: 381-398. DOI: 10.1007/978-94-009-3075-9_25.Peer-Reviewed Original ResearchIntegral membrane proteinsMembrane proteinsHelical integral membrane proteinsIntegral membrane protein foldingIntegral membrane protein bacteriorhodopsinMembrane protein foldingTransmembrane α-helicesMembrane protein bacteriorhodopsinTransmembrane helicesProtein foldingRenaturation experimentsVesicle fusionExtensive rearrangementNative proteinPolypeptide chainΑ-helixSequence segmentsLipid vesiclesProtein bacteriorhodopsinProteolytic fragmentsProteinFoldingHelixLipid phaseBacteriorhodopsin
1986
On the Folding of Bacteriorhodopsin
Engelman D. On the Folding of Bacteriorhodopsin. 1986, 167-172. DOI: 10.1007/978-1-4684-8410-6_18.Peer-Reviewed Original Research