2006
Mutations of Conserved Glycine Residues within the Membrane-Spanning Domain of Human Immunodeficiency Virus Type 1 gp41 Can Inhibit Membrane Fusion and Incorporation of Env onto Virions
Miyauchi K, Curran R, Matthews E, Komano J, Hoshino T, Engelman D, Matsuda Z. Mutations of Conserved Glycine Residues within the Membrane-Spanning Domain of Human Immunodeficiency Virus Type 1 gp41 Can Inhibit Membrane Fusion and Incorporation of Env onto Virions. Japanese Journal Of Infectious Diseases 2006, 59: 77-84. PMID: 16632906, DOI: 10.7883/yoken.jjid.2006.77.Peer-Reviewed Original Research
2001
Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne
Leeds J, Boyd D, Huber D, Sonoda G, Luu H, Engelman D, Beckwith J. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne. Journal Of Molecular Biology 2001, 313: 181-195. PMID: 11601855, DOI: 10.1006/jmbi.2001.5007.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAmino Acid SubstitutionBacteriophage lambdaBase SequenceBinding SitesCell MembraneCloning, MolecularDimerizationDNA-Binding ProteinsEscherichia coliEscherichia coli ProteinsGenes, BacterialGenetic VectorsGenomic LibraryMembrane ProteinsModels, MolecularMolecular Sequence DataProtein BindingProtein Sorting SignalsProtein Structure, QuaternaryProtein Structure, TertiaryProtein SubunitsProtein TransportRecombinant Fusion ProteinsRepressor ProteinsViral ProteinsViral Regulatory and Accessory ProteinsConceptsTransmembrane domainTransmembrane helix-helix associationE. coli inner membraneMembrane protein structuresGenomic DNA fragmentsHelix-helix associationG. von HeijneHelix-helix interactionsSite-directed mutagenesisSixth transmembrane domainTransmembrane helicesRepressor DNAGenetic toolsInner membraneVon HeijneProtein structureDNA fragmentsGenetic selectionNovel sequencesMultimerization motifMotifSequenceHomomultimerizationDomainMutagenesisConversion of Phospholamban into a Soluble Pentameric Helical Bundle †
Li H, Cocco M, Steitz T, Engelman D. Conversion of Phospholamban into a Soluble Pentameric Helical Bundle †. Biochemistry 2001, 40: 6636-6645. PMID: 11380258, DOI: 10.1021/bi0026573.Peer-Reviewed Original ResearchConceptsMembrane proteinsLipid-exposed surfaceMembrane protein phospholambanLaser lightX-ray scatteringTransmembrane domainHelical bundleWild-type phospholambanOligomeric stateNative phospholambanPolar residuesSimilar foldHydrophobic residuesSoluble proteinReticulum membraneSmall-angle X-ray scatteringHelical pentamersProtein phospholambanSoluble variantProteinNatural proteinsNMR experimentsNative contactsMultiangle laser lightSarcoplasmic reticulum membranesPolar residues drive association of polyleucine transmembrane helices
Zhou F, Merianos H, Brunger A, Engelman D. Polar residues drive association of polyleucine transmembrane helices. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 2250-2255. PMID: 11226225, PMCID: PMC30124, DOI: 10.1073/pnas.041593698.Peer-Reviewed Original ResearchConceptsPolar residuesPolyleucine sequenceHelix associationTransmembrane helix associationInterhelical hydrogen bondingTransmembrane protein functionTransmembrane helicesForm homoProtein functionTransmembrane proteinDrive associationMembrane proteinsDetergent micellesAsparagine residuesGeneral structural featuresBiological membranesResiduesOligomerization specificityProteinSequenceHelixStructural flexibilitySuch interactionsStructural featuresHeterooligomers
2000
Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations11Edited by G. Von Heijne
Petrache H, Grossfield A, MacKenzie K, Engelman D, Woolf T. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations11Edited by G. Von Heijne. Journal Of Molecular Biology 2000, 302: 727-746. PMID: 10986130, DOI: 10.1006/jmbi.2000.4072.Peer-Reviewed Original ResearchMeSH Keywords1,2-DipalmitoylphosphatidylcholineAlgorithmsAmino Acid MotifsAmino Acid SequenceBinding SitesComputer SimulationDimerizationDimyristoylphosphatidylcholineGlycophorinsLipid BilayersModels, MolecularMolecular Sequence DataNuclear Magnetic Resonance, BiomolecularPeptide FragmentsPhosphatidylcholinesProtein BindingProtein Structure, SecondaryProtein Structure, TertiaryThermodynamicsConceptsMonomer formLipid bilayersLipid chain lengthUnfavorable electrostatic repulsionLipid typeMolecular dynamics simulationsExplicit lipid bilayerElectrostatic repulsionMonomeric helicesLipid-lipid interactionsInteraction enthalpiesChain lengthDimer structureEnergetic propertiesCHARMM potentialInteraction energyAccessible volumeDynamics simulationsLipid propertiesUnsaturated lipidsEnthalpy calculationsLipid environmentBilayer thicknessAcyl chainsThermodynamic treatmentInterhelical hydrogen bonding drives strong interactions in membrane proteins
Xiao Zhou F, Cocco M, Russ W, Brunger A, Engelman D. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nature Structural & Molecular Biology 2000, 7: 154-160. PMID: 10655619, DOI: 10.1038/72430.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAsparagineCell MembraneChloramphenicol O-AcetyltransferaseCircular DichroismDetergentsDimerizationDNA-Binding ProteinsElectrophoresis, Polyacrylamide GelFungal ProteinsGlycophorinsHydrogen BondingLeucine ZippersMagnetic Resonance SpectroscopyMembrane ProteinsMicellesMicrococcal NucleaseMolecular Sequence DataPeptidesProtein ConformationProtein KinasesProtein Structure, SecondaryRecombinant ProteinsSaccharomyces cerevisiae ProteinsConceptsMembrane proteinsHelix associationTransmembrane α-helicesIntegral membrane proteinsInterhelical hydrogen bondingModel transmembrane helixTransmembrane helicesMembrane helicesGCN4 leucine zipperLeucine zipperPolar residuesSoluble proteinHydrophobic leucineΑ-helixBiological membranesProteinHelixNon-specific interactionsValine (HAV) sequenceMembraneZipperFoldingMotifAsparagineResidues
1999
Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain 11Edited by G. von Heijne
Fisher L, Engelman D, Sturgis J. Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain 11Edited by G. von Heijne. Journal Of Molecular Biology 1999, 293: 639-651. PMID: 10543956, DOI: 10.1006/jmbi.1999.3126.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceButyratesCircular DichroismDetergentsDimerizationEnergy TransferFluorescent DyesGlycophorinsHumansKineticsMicellesMolecular Sequence DataPeptide FragmentsPhosphorylcholineProtein Structure, SecondaryQuaternary Ammonium CompoundsSodium Dodecyl SulfateSolventsSpectrometry, FluorescenceThermodynamicsConceptsSpecific chemical interactionsFörster resonance energy transferResonance energy transferSodium dodecyl sulfateComplex solventChemical interactionFar-UV circular dichroismCircular dichroismDodecyl sulfateTransmembrane helix associationDetergent micellesHelix associationEnergy transferThermodynamic measurementsHelix formationObserved KdZwitterionic detergentSecondary structureDimerizationG. von HeijneHelix dimerizationOrders of magnitudeDetergentsTransmembrane helicesTransmembrane domainThe Length of the Flexible SNAREpin Juxtamembrane Region Is a Critical Determinant of SNARE-Dependent Fusion
McNew J, Weber T, Engelman D, Söllner T, Rothman J. The Length of the Flexible SNAREpin Juxtamembrane Region Is a Critical Determinant of SNARE-Dependent Fusion. Molecular Cell 1999, 4: 415-421. PMID: 10518222, DOI: 10.1016/s1097-2765(00)80343-3.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAntigens, SurfaceCarrier ProteinsMembrane FusionMembrane ProteinsMolecular Sequence DataMutagenesis, Site-DirectedNerve Tissue ProteinsPliabilityProlineProtein Structure, SecondaryR-SNARE ProteinsRecombinant ProteinsSNARE ProteinsSynaptosomal-Associated Protein 25Syntaxin 1Vesicular Transport ProteinsConceptsJuxtamembrane regionMembrane fusionSNARE-dependent membrane fusionSNARE-dependent fusionHelix-breaking proline residueSNARE proteinsTransmembrane domainSyntaxin 1ACoil domainProline residuesFlexible linkerLipid bilayersCritical determinantFusion efficiencyFusionVAMPDomainProteinRate of fusionSnareVesiclesResiduesLinkerSame changesRegionTOXCAT: A measure of transmembrane helix association in a biological membrane
Russ W, Engelman D. TOXCAT: A measure of transmembrane helix association in a biological membrane. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 863-868. PMID: 9927659, PMCID: PMC15316, DOI: 10.1073/pnas.96.3.863.Peer-Reviewed Original ResearchMeSH KeywordsATP-Binding Cassette TransportersBacterial ProteinsBase SequenceCarrier ProteinsCell MembraneChloramphenicol O-AcetyltransferaseDNA PrimersDNA-Binding ProteinsEscherichia coliEscherichia coli ProteinsGene LibraryGenes, ReporterGenetic Complementation TestMacromolecular SubstancesMaltose-Binding ProteinsMembrane ProteinsModels, MolecularMolecular Sequence DataMonosaccharide Transport ProteinsPeriplasmic Binding ProteinsProtein FoldingProtein Structure, SecondaryRecombinant Fusion ProteinsSpheroplastsTranscription FactorsConceptsTOXCAT systemDetergent micellesHelical membrane proteinsN-terminal DNATransmembrane helix associationTransmembrane alpha-helixReporter gene encoding chloramphenicolNatural membrane environmentGene encoding chloramphenicolTransmembrane domainTM associationTM dimerizationMembrane proteinsMembrane environmentOligomerization motifPolar residuesAlpha-helixHelix associationSequence specificityChimeric constructsCAT expressionBiological membranesFundamental eventNoncovalent associationAssay distinguishes
1998
Models for the Transmembrane Region of the Phospholamban Pentamer: Which Is Correct?a
ADAMS P, LEE A, BRÜNGER A, ENGELMAN D. Models for the Transmembrane Region of the Phospholamban Pentamer: Which Is Correct?a. Annals Of The New York Academy Of Sciences 1998, 853: 178-185. PMID: 10603945, DOI: 10.1111/j.1749-6632.1998.tb08265.x.Peer-Reviewed Original ResearchStructure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerization
MacKenzie K, Engelman D. Structure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerization. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 3583-3590. PMID: 9520409, PMCID: PMC19879, DOI: 10.1073/pnas.95.7.3583.Peer-Reviewed Original ResearchConceptsHelix-helix interactionsTransmembrane helix-helix associationTransmembrane helix-helix interactionsHelix-helix associationSingle-point mutantsStructure-based predictionTransmembrane domainMembrane proteinsDimer interfaceDimerization propensitySide-chain hydrophobicityDimer stabilityPoint mutationsSteric clashesMultiple mutationsMutationsSequence dependenceCompensatory effectFavorable van der Waals interactionsMutantsFoldingProteinInteractionDimerizationGlycophorin
1997
A Biophysical Study of Integral Membrane Protein Folding †
Hunt J, Earnest T, Bousché O, Kalghatgi K, Reilly K, Horváth C, Rothschild K, Engelman D. A Biophysical Study of Integral Membrane Protein Folding †. Biochemistry 1997, 36: 15156-15176. PMID: 9398244, DOI: 10.1021/bi970146j.Peer-Reviewed Original ResearchConceptsAlpha-helical integral membrane proteinsIntegral membrane proteinsMembrane proteinsIntegral membrane protein foldingMembrane protein foldingNon-native conformationsStable secondary structureCellular chaperonesBiophysical dissectionBeta-sheet structureProtein foldingIndividual polypeptidesBiophysical studiesStructure of bacteriorhodopsinTertiary structureSecondary structureReconstitution protocolsG helicesPolypeptideF helixProteinPhospholipid vesiclesHelixFoldingBacteriorhodopsinSTRUCTURAL PERSPECTIVES OF PHOSPHOLAMBAN, A HELICAL TRANSMEMBRANE PENTAMER
Arkin I, Adams P, Brünger A, Smith S, Engelman D. STRUCTURAL PERSPECTIVES OF PHOSPHOLAMBAN, A HELICAL TRANSMEMBRANE PENTAMER. Annual Review Of Biophysics 1997, 26: 157-179. PMID: 9241417, DOI: 10.1146/annurev.biophys.26.1.157.Peer-Reviewed Original ResearchA Transmembrane Helix Dimer: Structure and Implications
MacKenzie K, Prestegard J, Engelman D. A Transmembrane Helix Dimer: Structure and Implications. Science 1997, 276: 131-133. PMID: 9082985, DOI: 10.1126/science.276.5309.131.Peer-Reviewed Original ResearchConceptsMembrane-spanning alpha helicesSolution nuclear magnetic resonance spectroscopyDimeric transmembrane domainNuclear magnetic resonance spectroscopyTransmembrane helix dimerVan der Waals interactionsDer Waals interactionsAqueous detergent micellesIntermonomer hydrogen bondsTransmembrane helicesTransmembrane domainMagnetic resonance spectroscopyThree-dimensional structureDetergent micellesHelix dimerHydrogen bondsWaals interactionsAlpha-helixResonance spectroscopyGlycophorin ASpecific associationHelixSequence dependenceMicellesSpectroscopyDimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation
Burke C, Lemmon M, Coren B, Engelman D, Stern D. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene 1997, 14: 687-696. PMID: 9038376, DOI: 10.1038/sj.onc.1200873.Peer-Reviewed Original ResearchConceptsReceptor tyrosine kinasesTransmembrane domainEpidermal growth factor receptorSignal transductionWild-type domainSecond-site mutationsPosition 664Dimerization domainGrowth factor receptorTyrosine kinaseGlycophorin AFactor receptorValine substitutionDimerizationMutationsTransductionGlutamic acidDomainWeak dimerizationMutantsKinaseSignalingProteinEGFChimeras
1996
A Zinc-binding Domain Involved in the Dimerization of RAG1
Rodgers K, Bu Z, Fleming K, Schatz D, Engelman D, Coleman J. A Zinc-binding Domain Involved in the Dimerization of RAG1. Journal Of Molecular Biology 1996, 260: 70-84. PMID: 8676393, DOI: 10.1006/jmbi.1996.0382.Peer-Reviewed Original ResearchConceptsRecombination-activating gene 1Zinc-binding motifDimerization domainZinc fingerProtein-protein interactionsLymphoid-specific genesN-terminal thirdZinc finger sequencesAmino acid residuesC3HC4 motifRAG1 sequencesRAG1 proteinTerminal domainHomodimer formationAcid residuesBiophysical techniquesGene 1Energetics of associationMonomeric subunitsMotifProteinFinger sequencesSequenceC3HC4Zinc ionsFourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban
Ludlam C, Arkin I, Liu X, Rothman M, Rath P, Aimoto S, Smith S, Engelman D, Rothschild K. Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban. Biophysical Journal 1996, 70: 1728-1736. PMID: 8785331, PMCID: PMC1225141, DOI: 10.1016/s0006-3495(96)79735-7.Peer-Reviewed Original ResearchConceptsSite-directed isotope labelingLocal secondary structureIsotope labelingSecondary structureSelective ion channelsTotal reflection Fourier transformPeptide amide groupsAmide IReflection Fourier transformDeuterium/hydrogen exchangeTransmembrane domainMembrane domainsMembrane proteinsTransmembrane orientationAmino acid fragmentSpectroscopic characterizationIon channelsHydrophobic regionAmide carbonylProtein backboneCardiac muscle cellsAmide groupLipid bilayersATPase activityFourier transformCoassembly of Synthetic Segments of Shaker K+ Channel within Phospholipid Membranes †
Peled-Zehavi H, Arkin I, Engelman D, Shai Y. Coassembly of Synthetic Segments of Shaker K+ Channel within Phospholipid Membranes †. Biochemistry 1996, 35: 6828-6838. PMID: 8639634, DOI: 10.1021/bi952988t.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsOligomerization of proteinsMembrane-embedded segmentsMembrane-mimetic environmentsAlpha-helical contentAlpha-helical structureLipid/peptide molar ratioS4 regionShaker potassium channelSecondary structure studiesResonance energy transfer measurementsPhospholipid membranesZwitterionic phospholipid vesiclesTransmembrane segmentsMembrane proteinsPhospholipid milieuMimetic environmentsSynthetic segmentsFirst repeatS4 sequenceEel sodium channelS4 segmentEnergy transfer measurementsSecondary structure
1995
Structural Model of the Phospholamban Ion Channel Complex in Phospholipid Membranes
Arkin I, Rothman M, Ludlam C, Aimoto S, Engelman D, Rothschild K, Smith S. Structural Model of the Phospholamban Ion Channel Complex in Phospholipid Membranes. Journal Of Molecular Biology 1995, 248: 824-834. PMID: 7752243, DOI: 10.1006/jmbi.1995.0263.Peer-Reviewed Original ResearchConceptsSelective ion conductanceTransmembrane domainAmino acid residuesN-terminal 30 amino acid residuesAcid residuesCircular dichroismPentameric protein complexFull-length proteinC-terminal 22 amino acid residuesPhospholipid membranesIon channel complexTransmembrane helicesProtein complexesPhosphorylation sitesMembrane proteinsIon conductanceCarboxy terminusHelix bundleIon poreReticulum membraneInhibitory complexLong helixPentameric complexSecondary structureProteinComputational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban
Adams P, Arkin I, Engelman D, Brünger A. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban. Nature Structural & Molecular Biology 1995, 2: 154-162. PMID: 7749920, DOI: 10.1038/nsb0295-154.Peer-Reviewed Original ResearchConceptsPentameric ion channelsTransmembrane domainThree-dimensional structureMembrane proteinsHydrophobic residuesΑ-helixIon channelsComputational searchingEnvironmental constraintsTwo-bodyGlobal searchPhospholambanMutagenesisComputational methodsHomopentamerProteinExperimental dataResiduesData yields