1990
Rapid repair kinetics of pyrimidine(6–4)pyrimidone photoproducts in human cells are due to excision rather than conformational change
Mitchell D, Brash D, Nairn R. Rapid repair kinetics of pyrimidine(6–4)pyrimidone photoproducts in human cells are due to excision rather than conformational change. Nucleic Acids Research 1990, 18: 963-971. PMID: 2315046, PMCID: PMC330351, DOI: 10.1093/nar/18.4.963.Peer-Reviewed Original ResearchDefective DNA Repair in Humans: Clinical and Molecular Studies of Xeroderma Pigmentosum
Kraemer K, Seetharam S, Seidman M, Bredberg A, Brash D, Waters H, Protić-Sablijć M, Peck G, DiGiovanna J, Moshell A, Tarone R, Jones G, Parshad R, Sanford K. Defective DNA Repair in Humans: Clinical and Molecular Studies of Xeroderma Pigmentosum. Basic Life Sciences 1990, 53: 95-104. PMID: 2282051, DOI: 10.1007/978-1-4613-0637-5_7.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
1989
Ultraviolet photoproducts at the ochre suppressor mutation site in the gln U gene of Escherichia coli: Relevance to “mutation frequency decline”
Garvey N, Witkin E, Brash D. Ultraviolet photoproducts at the ochre suppressor mutation site in the gln U gene of Escherichia coli: Relevance to “mutation frequency decline”. Molecular Genetics And Genomics 1989, 219: 359-364. PMID: 2695824, DOI: 10.1007/bf00259607.Peer-Reviewed Original Research
1987
Photoproduct frequency is not the major determinant of UV base substitution hot spots or cold spots in human cells.
Brash DE, Seetharam S, Kraemer KH, Seidman MM, Bredberg A. Photoproduct frequency is not the major determinant of UV base substitution hot spots or cold spots in human cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 1987, 84: 3782-3786. PMID: 3473483, PMCID: PMC304960, DOI: 10.1073/pnas.84.11.3782.Peer-Reviewed Original Research
1982
UV-induced mutation hotspots occur at DNA damage hotspots
Brash D, Haseltine W. UV-induced mutation hotspots occur at DNA damage hotspots. Nature 1982, 298: 189-192. PMID: 7045692, DOI: 10.1038/298189a0.Peer-Reviewed Original Research