2024
Mitochondrial Unfolded Protein Response Gene Clpp Is Required for Oocyte Function and Female Fertility
Ergun Y, Imamoglu A, Cozzolino M, Demirkiran C, Basar M, Garg A, Yildirim R, Seli E. Mitochondrial Unfolded Protein Response Gene Clpp Is Required for Oocyte Function and Female Fertility. International Journal Of Molecular Sciences 2024, 25: 1866. PMID: 38339144, PMCID: PMC10855406, DOI: 10.3390/ijms25031866.Peer-Reviewed Original ResearchConceptsCaseinolytic peptidase PMouse modelProtein homeostasisStress responseUnfolded protein stress responseProtein stress responseCumulus/granulosa cellsOocyte competenceOocyte functionGlobal deletionFunctional abnormalitiesGenes clpPMetabolic stress responseFemale subfertilityFemale infertilityOocyte-specificOocytesReproductive functionMtUPRMiceProtein degradationReproductive competenceFemale fertilityDeletionHomeostasis
2022
Targeted Deletion of Mitofusin 1 and Mitofusin 2 Causes Female Infertility and Loss of Follicular Reserve
Cozzolino M, Ergun Y, Seli E. Targeted Deletion of Mitofusin 1 and Mitofusin 2 Causes Female Infertility and Loss of Follicular Reserve. Reproductive Sciences 2022, 30: 560-568. PMID: 35739352, DOI: 10.1007/s43032-022-01014-w.Peer-Reviewed Original ResearchConceptsMitofusin 1Mitofusin 2Double deletionFemale reproductive competencePotential functional redundancyDynamic organellesCellular homeostasisFunctional redundancyMitochondrial dynamicsEnvironmental stressMitochondrial functionMitochondrial dysfunctionMfn1Reproductive competenceTargeted deletionMfn2Oocyte maturationDeletionCritical roleReproductive agingFemale infertilityOocytesOocyte qualityFusion mechanismMitofusinsMitochondrial dysfunction caused by targeted deletion of Mfn1 does not result in telomere shortening in oocytes.
Cozzolino M, Seli E. Mitochondrial dysfunction caused by targeted deletion of Mfn1 does not result in telomere shortening in oocytes. Zygote 2022, 30: 735-737. PMID: 35730364, DOI: 10.1017/s0967199422000089.Peer-Reviewed Original ResearchConceptsMitochondrial dysfunctionMaintenance of telomeresTargeted deletionEnd-protection functionTTAGGG repeatsMitochondrial fusionTelomeric repeatsSomatic cellsMitofusin 1Reactive oxygen speciesEnzyme complexWild-type miceOocyte growthDNA damageMouse oocytesTelomerase activityOocyte maturationDeletionFollicular depletionOxygen speciesTelomere lengthTelomeresFollicular developmentOocytesRepeats
2020
Mitochondrial Stress Response Gene Clpp Is Not Required for Granulosa Cell Function
Esencan E, Cozzolino M, Imamoglu G, Seli E. Mitochondrial Stress Response Gene Clpp Is Not Required for Granulosa Cell Function. Antioxidants 2020, 10: 1. PMID: 33374937, PMCID: PMC7821922, DOI: 10.3390/antiox10010001.Peer-Reviewed Original ResearchMitochondrial unfolded protein responseUnfolded mitochondrial proteinsLoss of ClpPGerminal vesicleUnfolded protein responseCell functionCumulus cell functionGranulosa/cumulus cellsMitochondrial proteinsClpP deletionClpPProtein responseGermline deletionMetabolic stressGranulosa cell functionDeletionUPRCumulus cellsMice resultsSimilar numberMII oocytesFemale miceWild-type miceEarly antralCells
2019
Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve
Zhang M, Bener MB, Jiang Z, Wang T, Esencan E, Scott III R, Horvath T, Seli E. Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve. Cell Death & Disease 2019, 10: 560. PMID: 31332167, PMCID: PMC6646343, DOI: 10.1038/s41419-019-1799-3.Peer-Reviewed Original ResearchConceptsOocyte-granulosa cell communicationDynamic organellesAccumulation of ceramideFemale reproductive agingMitofusin 1Secondary follicle stageMitochondrial dynamicsCell communicationReproductive phenotypesCeramide synthesis inhibitor myriocinDevelopmental arrestApoptotic cell lossMitochondrial dysfunctionTargeted deletionOvarian follicular reserveOocyte maturationFemale fertilityFollicle stageDeletionPhenotypeReproductive agingOocytesCadherinFollicular reserveOrganellesMitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging
Zhang M, Bener MB, Jiang Z, Wang T, Esencan E, Scott R, Horvath T, Seli E. Mitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging. Aging 2019, 11: 3919-3938. PMID: 31204316, PMCID: PMC6628992, DOI: 10.18632/aging.102024.Peer-Reviewed Original ResearchConceptsMitofusin 2Key regulatory proteinsImpaired oocyte maturationFollicle developmentMitochondrial fusionRegulatory proteinsEndoplasmic reticulumMitochondrial dysfunctionTargeted deletionOocyte maturationOocytesReproductive agingFemale subfertilityOocyte qualityOvarian follicular reserveTelomeresMitochondriaMetabolic milieuProteinReticulumDeletionFusionPhenotypeApoptosisMaturation