2022
Targeted Deletion of Mitofusin 1 and Mitofusin 2 Causes Female Infertility and Loss of Follicular Reserve
Cozzolino M, Ergun Y, Seli E. Targeted Deletion of Mitofusin 1 and Mitofusin 2 Causes Female Infertility and Loss of Follicular Reserve. Reproductive Sciences 2022, 30: 560-568. PMID: 35739352, DOI: 10.1007/s43032-022-01014-w.Peer-Reviewed Original ResearchConceptsMitofusin 1Mitofusin 2Double deletionFemale reproductive competencePotential functional redundancyDynamic organellesCellular homeostasisFunctional redundancyMitochondrial dynamicsEnvironmental stressMitochondrial functionMitochondrial dysfunctionMfn1Reproductive competenceTargeted deletionMfn2Oocyte maturationDeletionCritical roleReproductive agingFemale infertilityOocytesOocyte qualityFusion mechanismMitofusins
2021
Emerging follicular activation strategies to treat women with poor ovarian response and primary ovarian insufficiency
Reig A, Herraiz S, Pellicer A, Seli E. Emerging follicular activation strategies to treat women with poor ovarian response and primary ovarian insufficiency. Current Opinion In Obstetrics & Gynecology 2021, 33: 241-248. PMID: 33896920, DOI: 10.1097/gco.0000000000000703.Peer-Reviewed Original ResearchConceptsPoor ovarian responsePrimary ovarian insufficiencyLive birthsOngoing pregnancyOvarian responseOvarian insufficiencyAutologous platelet-rich plasmaBone marrow transplantFemale reproductive agingPlatelet-rich plasmaIntraovarian injectionOvarian transplantationMarrow transplantReproductive agingFertility treatmentReproductive medicineWomenPregnancyBirthInsufficiencyPrevious reportsPreliminary studyMechanical disruptionAkt stimulationCutting-edge strategies
2020
Mitochondrial Dysfunction and Ovarian Aging
Kasapoğlu I, Seli E. Mitochondrial Dysfunction and Ovarian Aging. Endocrinology 2020, 161: bqaa001. PMID: 31927571, DOI: 10.1210/endocr/bqaa001.Peer-Reviewed Original Research
2019
Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve
Zhang M, Bener MB, Jiang Z, Wang T, Esencan E, Scott III R, Horvath T, Seli E. Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve. Cell Death & Disease 2019, 10: 560. PMID: 31332167, PMCID: PMC6646343, DOI: 10.1038/s41419-019-1799-3.Peer-Reviewed Original ResearchConceptsOocyte-granulosa cell communicationDynamic organellesAccumulation of ceramideFemale reproductive agingMitofusin 1Secondary follicle stageMitochondrial dynamicsCell communicationReproductive phenotypesCeramide synthesis inhibitor myriocinDevelopmental arrestApoptotic cell lossMitochondrial dysfunctionTargeted deletionOvarian follicular reserveOocyte maturationFemale fertilityFollicle stageDeletionPhenotypeReproductive agingOocytesCadherinFollicular reserveOrganellesMitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging
Zhang M, Bener MB, Jiang Z, Wang T, Esencan E, Scott R, Horvath T, Seli E. Mitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging. Aging 2019, 11: 3919-3938. PMID: 31204316, PMCID: PMC6628992, DOI: 10.18632/aging.102024.Peer-Reviewed Original ResearchConceptsMitofusin 2Key regulatory proteinsImpaired oocyte maturationFollicle developmentMitochondrial fusionRegulatory proteinsEndoplasmic reticulumMitochondrial dysfunctionTargeted deletionOocyte maturationOocytesReproductive agingFemale subfertilityOocyte qualityOvarian follicular reserveTelomeresMitochondriaMetabolic milieuProteinReticulumDeletionFusionPhenotypeApoptosisMaturationMitochondrial unfolded protein response: a stress response with implications for fertility and reproductive aging
Seli E, Wang T, Horvath TL. Mitochondrial unfolded protein response: a stress response with implications for fertility and reproductive aging. Fertility And Sterility 2019, 111: 197-204. PMID: 30691623, DOI: 10.1016/j.fertnstert.2018.11.048.Peer-Reviewed Original ResearchConceptsMitochondrial unfolded protein responseTwo-cell embryo developmentUnfolded protein responseImpaired oocyte maturationMorphology of mitochondriaMitochondrial dysfunction resultsPremature reproductive agingNovel mechanistic insightsMitochondrial DNA contentReactive oxygen species productionPrevention of agingCLPP resultsProtein responseOxygen species productionReproductive agingPreimplantation embryosAge-related accumulationOxidative phosphorylationStress responseEmbryo developmentForm blastocystsMitochondrial functionMitochondriaMitochondrial dysfunctionEnergy metabolism
2018
DNA methylation-based age prediction and telomere length in white blood cells and cumulus cells of infertile women with normal or poor response to ovarian stimulation
Morin SJ, Tao X, Marin D, Zhan Y, Landis J, Bedard J, Scott RT, Seli E. DNA methylation-based age prediction and telomere length in white blood cells and cumulus cells of infertile women with normal or poor response to ovarian stimulation. Aging 2018, 10: 3761-3773. PMID: 30530921, PMCID: PMC6326671, DOI: 10.18632/aging.101670.Peer-Reviewed Original ResearchConceptsChronologic agePremature reproductive agingReproductive-age womenWhite blood cellsOvarian stimulationInfertile womenOvarian responsePatient ageInfertile patientsAge womenPoor responseFollicular somatic cellsReproductive agingFertility treatmentCumulus cellsBlood cellsTelomere lengthAgeWomenPatientsStimulationWBCFemale ageRiskReproductive senescence
2016
Reproductive aging is associated with changes in oocyte mitochondrial dynamics, function, and mtDNA quantity
Babayev E, Wang T, Szigeti-Buck K, Lowther K, Taylor HS, Horvath T, Seli E. Reproductive aging is associated with changes in oocyte mitochondrial dynamics, function, and mtDNA quantity. Maturitas 2016, 93: 121-130. PMID: 27523387, PMCID: PMC5064871, DOI: 10.1016/j.maturitas.2016.06.015.Peer-Reviewed Original ResearchConceptsReactive oxygen speciesUnfolded protein response genesProtein response genesMitochondrial DNAMitochondrial dynamicsMitochondrial stressResponse genesMammalian reproductionMitochondria morphologyStressful conditionsMitochondrial changesMitochondriaROS levelsMtDNA levelsElevated expressionMtDNA quantityOxygen speciesOocytesGenesMature oocytesNumerous aspectsExpressionReproductive agingMII oocytesFollicle-enclosed oocytes