2013
Anti-epileptogenesis: Electrophysiology, diffusion tensor imaging and behavior in a genetic absence model
van Luijtelaar G, Mishra AM, Edelbroek P, Coman D, Frankenmolen N, Schaapsmeerders P, Covolato G, Danielson N, Niermann H, Janeczko K, Kiemeneij A, Burinov J, Bashyal C, Coquillette M, Lüttjohann A, Hyder F, Blumenfeld H, van Rijn CM. Anti-epileptogenesis: Electrophysiology, diffusion tensor imaging and behavior in a genetic absence model. Neurobiology Of Disease 2013, 60: 126-138. PMID: 23978468, PMCID: PMC3952020, DOI: 10.1016/j.nbd.2013.08.013.Peer-Reviewed Original ResearchConceptsDays post treatmentWAG/Rij ratsCritical treatment periodDuration of ADDepressive-like behaviorDepressive-like symptomsEarly pharmacological treatmentPost treatmentTreatment of patientsWhite matter changesGenetic absence modelCortical network activityDiffusion tensor imagingChronic epilepsySymptom onsetInternal capsulaCortical excitabilityPharmacological treatmentDecreased immobilitySwim testControl ratsTreatment periodCorpus callosumMatter changesPotential amplitude
2001
Inhibition of Voltage-Dependent Sodium Channels Suppresses the Functional Magnetic Resonance Imaging Response to Forepaw Somatosensory Activation in the Rodent
Kida I, Hyder F, Behar K. Inhibition of Voltage-Dependent Sodium Channels Suppresses the Functional Magnetic Resonance Imaging Response to Forepaw Somatosensory Activation in the Rodent. Cerebrovascular And Brain Metabolism Reviews 2001, 21: 585-591. PMID: 11333369, DOI: 10.1097/00004647-200105000-00013.Peer-Reviewed Original ResearchConceptsMagnetic resonance imaging responseSomatosensory activationFunctional magnetic resonance imaging (fMRI) responsesForepaw stimulationLamotrigine treatmentImaging responseGlutamate release inhibitorBOLD fMRI responsesFunctional imaging signalsBOLD fMRI signal changesFMRI signal changesTime-dependent mannerBaseline CBFAbsence of stimulationSomatosensory cortexRelease inhibitorChannel blockersRat cortexNeurotransmitter cycleBlood flow experimentsFMRI responsesBOLD fMRIStimulationLamotrigineTreatmentTopiramate Rapidly Raises Brain GABA in Epilepsy Patients
Petroff O, Hyder F, Rothman D, Mattson R. Topiramate Rapidly Raises Brain GABA in Epilepsy Patients. Epilepsia 2001, 42: 543-548. PMID: 11440351, DOI: 10.1046/j.1528-1157.2001.18800.x.Peer-Reviewed Original ResearchMeSH KeywordsAdministration, OralAnticonvulsantsBrain ChemistryCarnosineDose-Response Relationship, DrugDrug Administration ScheduleEpilepsy, Complex PartialFructoseGamma-Aminobutyric AcidHumansMagnetic Resonance ImagingMagnetic Resonance SpectroscopyOccipital LobePyrrolidinonesStimulation, ChemicalTopiramateConceptsBrain GABAOral doseLong-term pharmacodynamic effectsFirst oral doseComplex partial seizuresTPM dosesTPM therapyFirst doseFurther seizuresPartial seizuresPharmacodynamic effectsEpilepsy patientsOccipital cortexPatientsGABAPartial protectionDoseFirst dayAcid metabolismDose responseHomocarnosineSeizuresVivo measurementsSurface coilTopiramate
2000
Effects of Gabapentin on Brain GABA, Homocarnosine, and Pyrrolidinone in Epilepsy Patients
Petroff O, Hyder F, Rothman D, Mattson R. Effects of Gabapentin on Brain GABA, Homocarnosine, and Pyrrolidinone in Epilepsy Patients. Epilepsia 2000, 41: 675-680. PMID: 10840398, DOI: 10.1111/j.1528-1157.2000.tb00227.x.Peer-Reviewed Original ResearchConceptsBrain gamma-aminobutyric acidGamma-aminobutyric acidFirst oral doseFirst doseOral doseAntiepileptic drugsEffect of gabapentinStandard daily doseSingle high doseGBP therapyDaily therapyNeuropathic painAnticonvulsant effectsFurther seizuresDaily doseEpilepsy patientsOccipital cortexHigh doseGabapentinPatientsPartial protectionDoseHomocarnosineTherapyVivo measurements
1999
Effects of Vigabatrin on the GABAergic System as Determined by [123I]Iomazenil SPECT and GABA MRS
Verhoeff N, Petroff O, Hyder F, Zoghbi S, Fujita M, Rajeevan N, Rothman D, Seibyl J, Mattson R, Innis R. Effects of Vigabatrin on the GABAergic System as Determined by [123I]Iomazenil SPECT and GABA MRS. Epilepsia 1999, 40: 1433-1438. PMID: 10528940, DOI: 10.1111/j.1528-1157.1999.tb02016.x.Peer-Reviewed Original ResearchConceptsEffects of vigabatrinGABA levelsTissue GABA levelsMR imagingCentral gamma-aminobutyric acidGABA magnetic resonance spectroscopyDistribution volumeHealthy age-matched controlsOccipital GABA levelsAge-matched controlsGamma-aminobutyric acidVolume of interestSingle photon emissionMagnetic resonance spectroscopyTotal plasma activityT1-weighted MR imagingPartial seizuresGABAergic systemOccipital cortexConstant infusion methodPlasma activityVigabatrinOccipital activityEffective doseWilcoxon testAcute Effects of Vigabatrin on Brain GABA and Homocarnosine in Patients with Complex Partial Seizures
Petroff O, Hyder F, Collins T, Mattson R, Rothman D. Acute Effects of Vigabatrin on Brain GABA and Homocarnosine in Patients with Complex Partial Seizures. Epilepsia 1999, 40: 958-964. PMID: 10403220, DOI: 10.1111/j.1528-1157.1999.tb00803.x.Peer-Reviewed Original ResearchConceptsBrain gamma-aminobutyric acidGamma-aminobutyric acidDose of vigabatrinComplex partial seizuresPartial seizuresRefractory complex partial seizuresFirst oral doseVGB therapyFirst doseFurther seizuresAdjunct therapyDay dosingOral doseAcute effectsOral administrationOccipital cortexMedian increasePatientsVigabatrinChronic effectsNormal levelsPartial protectionSeizuresDoseHomocarnosineLocalized 1H NMR measurements of 2‐pyrrolidinone in human brain in vivo
Hyder F, Petroff O, Mattson R, Rothman D. Localized 1H NMR measurements of 2‐pyrrolidinone in human brain in vivo. Magnetic Resonance In Medicine 1999, 41: 889-896. PMID: 10332870, DOI: 10.1002/(sici)1522-2594(199905)41:5<889::aid-mrm6>3.0.co;2-r.Peer-Reviewed Original ResearchGABA Changes with Vigabatrin in the Developing Human Brain
Novotny E, Hyder F, Shevell M, Rothman D. GABA Changes with Vigabatrin in the Developing Human Brain. Epilepsia 1999, 40: 462-466. PMID: 10219272, DOI: 10.1111/j.1528-1157.1999.tb00741.x.Peer-Reviewed Original ResearchConceptsBrain GABA levelsGABA levelsBrain GABAVGB treatmentRole of GABASeizure controlGABA changesSeizure susceptibilityPediatric epilepsyEpileptic focusOccipital lobeNervous systemEpileptic regionsVigabatrinEpilepsyGABAGABA metabolismTreatmentAge 1Noninvasive measurementHuman brainSubjectsDrugsFivefold increaseChildrenTopiramate increases brain GABA, homocarnosine, and pyrrolidinone in patients with epilepsy
Petroff O, Hyder F, Mattson R, Rothman D. Topiramate increases brain GABA, homocarnosine, and pyrrolidinone in patients with epilepsy. Neurology 1999, 52: 473-478. PMID: 10025774, DOI: 10.1212/wnl.52.3.473.Peer-Reviewed Original ResearchConceptsBrain gamma-aminobutyric acidGamma-aminobutyric acidComplex partial seizuresAntiepileptic actionPartial seizuresRefractory complex partial seizuresNew antiepileptic medicationsEffects of topiramateNew antiepileptic drugsDrug-free volunteersMultiple putative mechanismsPotent antiepileptic actionAntiepileptic medicationsAdditional patientsAntiepileptic drugsControl subjectsOccipital cortexTopiramatePatientsPutative mechanismsHomocarnosineEpilepsySeizuresVivo measurementsSurface coil
1998
Vigabatrin increases human brain homocarnosine and improves seizure control
Petroff O, Mattson R, Behar K, Hyder F, Rothman D. Vigabatrin increases human brain homocarnosine and improves seizure control. Annals Of Neurology 1998, 44: 948-952. PMID: 9851440, DOI: 10.1002/ana.410440614.Peer-Reviewed Original ResearchConceptsGamma-aminobutyric acidSeizure controlGABA concentrationAddition of vigabatrinLow-dose vigabatrinImproved seizure controlMean GABA concentrationAntiepileptic drug vigabatrinInhibitory neuromodulatorDaily doseGABAergic neuronsGABA levelsLarge dosesHomocarnosine concentrationsVigabatrinDrug vigabatrinHomocarnosinePatientsHuman brainMagnetic resonance spectroscopyControlNeuromodulatorsNeuronsDoseDoses