2009
Targeted correction of a thalassemia-associated β-globin mutation induced by pseudo-complementary peptide nucleic acids
Lonkar P, Kim KH, Kuan JY, Chin JY, Rogers FA, Knauert MP, Kole R, Nielsen PE, Glazer PM. Targeted correction of a thalassemia-associated β-globin mutation induced by pseudo-complementary peptide nucleic acids. Nucleic Acids Research 2009, 37: 3635-3644. PMID: 19364810, PMCID: PMC2699504, DOI: 10.1093/nar/gkp217.Peer-Reviewed Original ResearchConceptsBeta-globin geneNucleotide excision repair factorsAltered helical structureExcision repair factorsSingle base-pair modificationTriplex-forming peptide nucleic acidsPseudo-complementary peptide nucleic acidsDisease-related genesDonor DNA fragmentsComplementary DNA sequenceNucleic acidsProper splicingRepair factorsSite-specific bindingMammalian cellsSite-specific modificationDNA repairDNA sequencesGene targetingSecond intronDNA fragmentsHuman cellsTriple helix formationGene correctionHuman fibroblast cells
2004
Targeted Genome Modification Via Triple Helix Formation
Rogers F, Glazer P. Targeted Genome Modification Via Triple Helix Formation. Cancer Drug Discovery And Development 2004, 27-43. DOI: 10.1007/978-1-59259-777-2_3.Peer-Reviewed Original ResearchDefective geneTargeted genome modificationInhibitors of proteinGene functionGenome modificationGene productsGene expressionTriple helix formationTremendous clinical valueSynthetic oligonucleotidesGenesInherited diseaseHelix formationTreatment of diseasesExpressionDifferent diseasesProteinTherapeutic agentsOligonucleotideTherapeutic useTremendous stridesInhibitorsFunction