2024
Cardiometabolic characteristics of people with metabolically healthy and unhealthy obesity
Petersen M, Smith G, Palacios H, Farabi S, Yoshino M, Yoshino J, Cho K, Davila-Roman V, Shankaran M, Barve R, Yu J, Stern J, Patterson B, Hellerstein M, Shulman G, Patti G, Klein S. Cardiometabolic characteristics of people with metabolically healthy and unhealthy obesity. Cell Metabolism 2024, 36: 745-761.e5. PMID: 38569471, PMCID: PMC11025492, DOI: 10.1016/j.cmet.2024.03.002.Peer-Reviewed Original ResearchConceptsUnhealthy obesityPlasma PAI-1 concentrationAbnormalities associated with obesityMetabolically healthy obesityMetabolically unhealthy obesityPAI-1 concentrationsMetabolic heterogeneity of obesityHeterogeneity of obesityMetabolically healthy leanSystemic metabolic functionCharacteristics of peopleDecreased oxidative stressHealthy obesityCardiometabolic characteristicsAdipose tissue biologyHealthy leanSkeletal muscle biologyPlasma adiponectinPlasma glucoseObesityMetabolic heterogeneityOxidative stressPotential mechanismsTissue biologyMuscle biology
2023
The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans
Luukkonen P, Porthan K, Ahlholm N, Rosqvist F, Dufour S, Zhang X, Lehtimäki T, Seppänen W, Orho-Melander M, Hodson L, Petersen K, Shulman G, Yki-Järvinen H. The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans. Cell Metabolism 2023, 35: 1887-1896.e5. PMID: 37909034, DOI: 10.1016/j.cmet.2023.10.008.Peer-Reviewed Original ResearchConceptsDe novo lipogenesisHepatic de novo lipogenesisPlasma β-hydroxybutyrate concentrationsΒ-hydroxybutyrate concentrationsLiver diseaseNovo lipogenesisPNPLA3 I148M variantHepatic mitochondrial redox stateMajor genetic risk factorI148M variantFatty liver diseaseGenetic risk factorsHepatic mitochondrial dysfunctionKetogenic dietMixed mealRisk factorsHepatic metabolismHomozygous carriersM carriersMitochondrial dysfunctionCitrate synthase fluxM variantKetogenesisMitochondrial redox stateMitochondrial functionInhibition of HSD17B13 protects against liver fibrosis by inhibition of pyrimidine catabolism in nonalcoholic steatohepatitis
Luukkonen P, Sakuma I, Gaspar R, Mooring M, Nasiri A, Kahn M, Zhang X, Zhang D, Sammalkorpi H, Penttilä A, Orho-Melander M, Arola J, Juuti A, Zhang X, Yimlamai D, Yki-Järvinen H, Petersen K, Shulman G. Inhibition of HSD17B13 protects against liver fibrosis by inhibition of pyrimidine catabolism in nonalcoholic steatohepatitis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2217543120. PMID: 36669104, PMCID: PMC9942818, DOI: 10.1073/pnas.2217543120.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseLiver fibrosisLiver diseaseCommon chronic liver diseaseChronic liver diseaseFatty liver diseaseRisk of fibrosisDistinct mouse modelsPyrimidine catabolismNonalcoholic steatohepatitisMouse modelTherapeutic targetFibrosisDihydropyrimidine dehydrogenaseHuman liverA variantCommon variantsMetabolomics approachDiseaseMiceInhibitionCatabolismKnockdownSteatohepatitisGimeracil
2022
Deletion of Jazf1 gene causes early growth retardation and insulin resistance in mice
Lee H, Jang H, Li H, Samuel V, Dudek K, Osipovich A, Magnuson M, Sklar J, Shulman G. Deletion of Jazf1 gene causes early growth retardation and insulin resistance in mice. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2213628119. PMID: 36442127, PMCID: PMC9894197, DOI: 10.1073/pnas.2213628119.Peer-Reviewed Original ResearchConceptsKO miceEarly growth retardationInsulin resistanceFat massGrowth retardationAge-matched wild-type miceHepatic nuclear factor 4 alphaGH-IGF-1 axisHigh-fat diet feedingKO liversHyperinsulinemic-euglycemic clamp techniquePlasma growth hormone concentrationInsulin-like growth factor-1Type 2 diabetesGrowth hormone concentrationsIGF-1 expressionWild-type miceLean body massMuscle insulin resistanceGrowth factor-1Nuclear factor 4 alphaInsulin sensitivityDiet feedingPlasma concentrationsHormone concentrationsEthnic and gender differences in hepatic lipid content and related cardiometabolic parameters in lean individuals
Petersen KF, Dufour S, Li F, Rothman DL, Shulman GI. Ethnic and gender differences in hepatic lipid content and related cardiometabolic parameters in lean individuals. JCI Insight 2022, 7 PMID: 35167495, PMCID: PMC9057590, DOI: 10.1172/jci.insight.157906.Peer-Reviewed Original ResearchConceptsCardiometabolic risk factorsInsulin resistanceRisk factorsHDL cholesterolLDL cholesterolTotal cholesterolLean individualsMatsuda insulin sensitivity indexAI menCardiovascular risk factorsHomeostatic model assessmentHepatic triglyceride contentInsulin sensitivity indexType 2 diabetesHepatic lipid contentNovo Nordisk FoundationUric acid concentrationCardiometabolic parametersCardiovascular riskPremenopausal womenFatty liverPlasma insulinInsulin sensitivityPlasma concentrationsModel assessmentBioactive lipids and metabolic syndrome—a symposium report
DeVito LM, Dennis EA, Kahn BB, Shulman GI, Witztum JL, Sadhu S, Nickels J, Spite M, Smyth S, Spiegel S. Bioactive lipids and metabolic syndrome—a symposium report. Annals Of The New York Academy Of Sciences 2022, 1511: 87-106. PMID: 35218041, PMCID: PMC9219555, DOI: 10.1111/nyas.14752.Peer-Reviewed Original ResearchConceptsBioactive lipidsMetabolic syndromeCardiometabolic conditionsCardiovascular diseaseAnimal modelsDietary lipidsLipid metabolismMetabolic homeostasisMultitude of functionsLipidomic approachLipid pathwaysContinued investigationSyndromeMolecular functionsSymposium reportGenetic studiesLipidsPathwayInflammationGreater understandingDiseaseLiverMacrophagesLipogenesisDyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice
Bhat N, Narayanan A, Fathzadeh M, Kahn M, Zhang D, Goedeke L, Neogi A, Cardone RL, Kibbey RG, Fernandez-Hernando C, Ginsberg HN, Jain D, Shulman G, Mani A. Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice. Journal Of Clinical Investigation 2022, 132: e153724. PMID: 34855620, PMCID: PMC8803348, DOI: 10.1172/jci153724.Peer-Reviewed Original ResearchConceptsDe novo lipogenesisNonalcoholic steatohepatitisInsulin resistanceHepatic lipogenesisElevated de novo lipogenesisNonalcoholic fatty liver diseaseFatty liver diseaseLiver of patientsHepatic glycogen storageHigh-sucrose dietHepatic insulin resistanceFatty acid uptakeMetabolic syndromeLiver diseaseHepatic steatosisTriacylglycerol secretionNovo lipogenesisHepatic insulinTherapeutic targetImpaired activationAcid uptakeGlycogen storageMouse liverLiverLipogenesis
2021
IL-27 signalling promotes adipocyte thermogenesis and energy expenditure
Wang Q, Li D, Cao G, Shi Q, Zhu J, Zhang M, Cheng H, Wen Q, Xu H, Zhu L, Zhang H, Perry RJ, Spadaro O, Yang Y, He S, Chen Y, Wang B, Li G, Liu Z, Yang C, Wu X, Zhou L, Zhou Q, Ju Z, Lu H, Xin Y, Yang X, Wang C, Liu Y, Shulman GI, Dixit VD, Lu L, Yang H, Flavell RA, Yin Z. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature 2021, 600: 314-318. PMID: 34819664, DOI: 10.1038/s41586-021-04127-5.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAnimalsBariatric SurgeryDisease Models, AnimalEnergy MetabolismFemaleHumansInsulin ResistanceInterleukin-27MaleMiceObesityP38 Mitogen-Activated Protein KinasesPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaReceptors, InterleukinSignal TransductionThermogenesisUncoupling Protein 1ConceptsIL-27Beige adipose tissueAdipose tissueSerum IL-27Diet-induced obesityBariatric surgeryMetabolic morbidityImmunological factorsInsulin resistanceObesity showTherapeutic administrationMetabolic disordersMouse modelObesityPromising targetEnergy expenditureSignaling promotesThermogenesisBody temperatureMetabolic programsImportant roleTissueCritical roleImmunotherapyMorbidityMMAB promotes negative feedback control of cholesterol homeostasis
Goedeke L, Canfrán-Duque A, Rotllan N, Chaube B, Thompson BM, Lee RG, Cline GW, McDonald JG, Shulman GI, Lasunción MA, Suárez Y, Fernández-Hernando C. MMAB promotes negative feedback control of cholesterol homeostasis. Nature Communications 2021, 12: 6448. PMID: 34750386, PMCID: PMC8575900, DOI: 10.1038/s41467-021-26787-7.Peer-Reviewed Original ResearchMeSH KeywordsAlkyl and Aryl TransferasesAnimalsCell Line, TumorCholesterolCholesterol, LDLFeedback, PhysiologicalGene Expression ProfilingHeLa CellsHep G2 CellsHomeostasisHumansHydroxymethylglutaryl CoA ReductasesLiverMice, Inbred C57BLMice, KnockoutPromoter Regions, GeneticReceptors, LDLRNA InterferenceSterol Regulatory Element Binding Protein 2ConceptsCholesterol biosynthesisCholesterol homeostasisMouse hepatic cell lineIntegrative genomic strategyIntricate regulatory networkMaster transcriptional regulatorCellular cholesterol levelsHMGCR activityLDL-cholesterol uptakeCholesterol levelsHuman hepatic cellsSterol contentGenomic strategiesTranscriptional regulatorsRegulatory networksIntracellular cholesterol levelsGene expressionUnexpected roleHepatic cell linesBiosynthesisMMABIntracellular levelsCell linesHomeostasisExpression of SREBP2CIDEA expression in SAT from adolescent girls with obesity and unfavorable patterns of abdominal fat distribution
Tarabra E, Nouws J, Vash‐Margita A, Hellerstein M, Shabanova V, McCollum S, Pierpont B, Zhao D, Shulman GI, Caprio S. CIDEA expression in SAT from adolescent girls with obesity and unfavorable patterns of abdominal fat distribution. Obesity 2021, 29: 2068-2080. PMID: 34672413, PMCID: PMC8612981, DOI: 10.1002/oby.23295.Peer-Reviewed Original ResearchConceptsAbdominal fat distributionVisceral adipose tissueCIDEA expressionFat distributionProtein levelsAbdominal SATAdolescent girlsHigher visceral adipose tissueSubcutaneous adipose tissue biopsiesAdipose tissue biopsiesReverse transcription-polymerase chain reactionTranscription-polymerase chain reactionMagnetic resonance imagingWeight gain effectsExpression of CIDEAAdipocyte dysfunctionSAT biopsiesAdipose lipidsInsulin resistanceAdipocyte hypertrophySmall adipocytesAdipose tissueTissue biopsiesUnfavorable patternsStrong inverse correlationDeletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance
Schumann T, König J, von Loeffelholz C, Vatner DF, Zhang D, Perry RJ, Bernier M, Chami J, Henke C, Kurzbach A, El-Agroudy NN, Willmes DM, Pesta D, de Cabo R, O´Sullivan J, Simon E, Shulman GI, Hamilton BS, Birkenfeld AL. Deletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance. Communications Biology 2021, 4: 826. PMID: 34211098, PMCID: PMC8249653, DOI: 10.1038/s42003-021-02279-8.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsDiabetes Mellitus, Type 2Diet, High-FatGene ExpressionGenetic Predisposition to DiseaseHumansInsulin ResistanceLipid MetabolismLiverMice, Inbred C57BLMice, KnockoutMitochondriaMonocarboxylic Acid TransportersNon-alcoholic Fatty Liver DiseaseObesityOxygen ConsumptionConceptsMitochondrial respirationGenome-wide association studiesNovel susceptibility genesLipid accumulationPlasma membraneAMPK activationAssociation studiesPhysiological functionsEctopic lipid accumulationReduced hepatic lipid accumulationSusceptibility genesLactate transporterMonocarboxylate transportersPotential targetGenesTransportersDeletionLipid contentHepatic lipid accumulationPotential importanceKnockout miceRespirationHepatic insulin sensitivityMCT13AccumulationMechanisms and disease consequences of nonalcoholic fatty liver disease
Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021, 184: 2537-2564. PMID: 33989548, DOI: 10.1016/j.cell.2021.04.015.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseProgressive liver injuryFatty liver diseaseNonalcoholic steatohepatitisLiver diseaseLiver injuryHepatocellular carcinomaEffect of NAFLDHepatic stellate cell activationChronic liver diseaseBile acid toxicityStellate cell activationFibrosis progressionAdvanced subtypesMacrophage dysfunctionPathogenetic mechanismsCell activationHepatic glucoseLipid metabolismDisease consequencesDiseaseAcid toxicityCarcinomaInjuryMetabolic originValidation of a Gas Chromatography-Mass Spectrometry Method for the Measurement of the Redox State Metabolic Ratios Lactate/Pyruvate and β-Hydroxybutyrate/Acetoacetate in Biological Samples
Wijngaard R, Perramón M, Parra-Robert M, Hidalgo S, Butrico G, Morales-Ruiz M, Zeng M, Casals E, Jiménez W, Fernández-Varo G, Shulman GI, Cline GW, Casals G. Validation of a Gas Chromatography-Mass Spectrometry Method for the Measurement of the Redox State Metabolic Ratios Lactate/Pyruvate and β-Hydroxybutyrate/Acetoacetate in Biological Samples. International Journal Of Molecular Sciences 2021, 22: 4752. PMID: 33946157, PMCID: PMC8125771, DOI: 10.3390/ijms22094752.Peer-Reviewed Original ResearchReply to Carter et al.: An alternative hypothesis for why exposure to static magnetic and electric fields treats type 2 diabetes
Petersen KF, Rothman D, Shulman GI. Reply to Carter et al.: An alternative hypothesis for why exposure to static magnetic and electric fields treats type 2 diabetes. AJP Endocrinology And Metabolism 2021, 320: e1003-e1003. PMID: 33843277, DOI: 10.1152/ajpendo.00120.2021.Peer-Reviewed Original ResearchPoint: An alternative hypothesis for why exposure to static magnetic and electric fields treats type 2 diabetes
Petersen KF, Rothman D, Shulman GI. Point: An alternative hypothesis for why exposure to static magnetic and electric fields treats type 2 diabetes. AJP Endocrinology And Metabolism 2021, 320: e999-e1000. PMID: 33843279, DOI: 10.1152/ajpendo.00657.2020.Peer-Reviewed Original ResearchTherapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH
Goedeke L, Shulman GI. Therapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH. Molecular Metabolism 2021, 46: 101178. PMID: 33545391, PMCID: PMC8085597, DOI: 10.1016/j.molmet.2021.101178.Peer-Reviewed Original ResearchConceptsFatty liver diseaseLiver diseaseSmall molecule mitochondrial uncouplersTherapeutic potentialMitochondrial uncouplerNon-human primate studiesType 2 diabetesWide therapeutic indexSystemic toxicity concernsTreatment of MetabolicCell-specific effectsInsulin resistanceTherapeutic indexMetabolic diseasesNonalcoholic hepatosteatosisSustained increaseToxicity concernsPrimate studiesDiseaseTherapeutic developmentMitochondrial inefficiencyNutrient oxidationATP productionTreatmentTissueAn update on brown adipose tissue biology: a discussion of recent findings
Gaspar RC, Pauli JR, Shulman GI, Muñoz VR. An update on brown adipose tissue biology: a discussion of recent findings. AJP Endocrinology And Metabolism 2021, 320: e488-e495. PMID: 33459179, PMCID: PMC7988785, DOI: 10.1152/ajpendo.00310.2020.Peer-Reviewed Original ResearchConceptsBrown adipose tissueBAT thermogenesisBrown adipose tissue biologyEnergy expenditureBrown-like cellsWhole-body glucoseAdipose tissue biologyBAT metabolismAdrenergic drugsAdipose tissuePotential treatmentThermogenic activityWhite adipocytesBody glucoseFat metabolismEndocrine mechanismsBeneficial roleSecretory moleculesActivity capacityTissue biologyThermogenesisRecent findingsRecent studiesAdditional focusMetabolismShort-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol – PKCε – insulin receptorT1160 phosphorylation
Lyu K, Zhang D, Song J, Li X, Perry RJ, Samuel VT, Shulman GI. Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol – PKCε – insulin receptorT1160 phosphorylation. JCI Insight 2021, 6: e139946. PMID: 33411692, PMCID: PMC7934919, DOI: 10.1172/jci.insight.139946.Peer-Reviewed Original ResearchConceptsInsulin resistanceInsulin actionAdipose tissue insulin resistanceTissue insulin resistanceWT control miceHyperinsulinemic-euglycemic clampShort-term HFDTissue insulin actionAdipose tissue insulin actionDiet-fed ratsPotential therapeutic targetHFD feedingControl miceInsulin sensitivityTherapeutic targetLipolysis suppressionImpairs insulinHFDPKCε activationGlucose uptakeΕ activationMiceDiacylglycerol accumulationRecent evidenceProtein kinase C
2020
Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance
He F, Huang Y, Song Z, Zhou HJ, Zhang H, Perry RJ, Shulman GI, Min W. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. Journal Of Experimental Medicine 2020, 218: e20201416. PMID: 33315085, PMCID: PMC7927432, DOI: 10.1084/jem.20201416.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAdipose TissueAnimalsDiabetes Mellitus, Type 2Diet, High-FatEnergy MetabolismFatty LiverGene DeletionGene TargetingGluconeogenesisHomeostasisHumansHyperglycemiaInflammationInsulin ResistanceLipogenesisLiverMaleMice, Inbred C57BLMice, KnockoutMitochondriaMitophagyNF-kappa BOxidative StressPhenotypeReactive Oxygen SpeciesSequestosome-1 ProteinSignal TransductionThioredoxinsConceptsHepatic insulin resistanceWhite adipose tissueInsulin resistanceAdipose inflammationType 2 diabetes mellitusLipid metabolic disordersNF-κB inhibitorAdipose-specific deletionWhole-body energy homeostasisAltered fatty acid metabolismFatty acid metabolismT2DM progressionT2DM patientsDiabetes mellitusReactive oxygen species pathwayHepatic steatosisMetabolic disordersNF-κBP62/SQSTM1Adipose tissueHuman adipocytesEnergy homeostasisExcessive mitophagyOxygen species pathwayInflammationHepatic Insulin Resistance Is Not Pathway Selective in Humans With Nonalcoholic Fatty Liver Disease.
Ter Horst KW, Vatner DF, Zhang D, Cline GW, Ackermans MT, Nederveen AJ, Verheij J, Demirkiran A, van Wagensveld BA, Dallinga-Thie GM, Nieuwdorp M, Romijn JA, Shulman GI, Serlie MJ. Hepatic Insulin Resistance Is Not Pathway Selective in Humans With Nonalcoholic Fatty Liver Disease. Diabetes Care 2020, 44: 489-498. PMID: 33293347, PMCID: PMC7818337, DOI: 10.2337/dc20-1644.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseDe novo lipogenesisFatty liver diseaseBariatric surgeryLiver diseaseImpaired insulin-mediated suppressionGlucose productionHepatic de novo lipogenesisPeripheral glucose metabolismHyperinsulinemic-euglycemic clampType 2 diabetesInsulin-mediated suppressionInsulin-resistant subjectsHepatic insulin resistanceLiver biopsy samplesSuppress glucose productionLipogenic transcription factorsInsulin-mediated regulationObese subjectsInsulin resistanceAcute increaseNovo lipogenesisGlucose metabolismBiopsy samplesParadoxical increase