2023
Preclinical evaluation of a brain penetrant PARP PET imaging probe in rat glioblastoma and nonhuman primates
Chen B, Ojha D, Toyonaga T, Tong J, Pracitto R, Thomas M, Liu M, Kapinos M, Zhang L, Zheng M, Holden D, Fowles K, Ropchan J, Nabulsi N, De Feyter H, Carson R, Huang Y, Cai Z. Preclinical evaluation of a brain penetrant PARP PET imaging probe in rat glioblastoma and nonhuman primates. European Journal Of Nuclear Medicine And Molecular Imaging 2023, 50: 2081-2099. PMID: 36849748, DOI: 10.1007/s00259-023-06162-y.Peer-Reviewed Original ResearchConceptsPositron emission tomographyHealthy nonhuman primatesVolume of distributionDistribution volume ratioBrain kineticsRat glioblastoma modelPreclinical evaluationBrain regionsGlioblastoma modelPET tracersNonhuman primatesTumor-bearing ratsEx vivo biodistributionPET imaging resultsActive clinical trialsTreatment of glioblastomaHigh specific uptakeDynamic PET scansNoninvasive quantificationBrain positron emission tomographyNondisplaceable volumeBrain penetrationLow nonspecific uptakePrognostic informationClinical trialsIn vivo imaging of cerebral glucose metabolism informs on subacute to chronic post-stroke tissue status – A pilot study combining PET and deuterium metabolic imaging
Meerwaldt A, Straathof M, Oosterveld W, van Heijningen C, van Leent M, Toner Y, Munitz J, Teunissen A, Daemen C, van der Toorn A, van Vliet G, van Tilborg G, De Feyter H, de Graaf R, Hol E, Mulder W, Dijkhuizen R. In vivo imaging of cerebral glucose metabolism informs on subacute to chronic post-stroke tissue status – A pilot study combining PET and deuterium metabolic imaging. Cerebrovascular And Brain Metabolism Reviews 2023, 43: 778-790. PMID: 36606595, PMCID: PMC10108187, DOI: 10.1177/0271678x221148970.Peer-Reviewed Original ResearchConceptsTransient middle cerebral artery occlusionPositron emission tomographyGlucose metabolismPost-ischemic brain tissueMiddle cerebral artery occlusionFDG positron emission tomographyFluorodeoxyglucose positron emission tomographyMetabolic imagingSignificant glial activationAcute ischemic strokeCerebral artery occlusionCerebral energy metabolismDeuterium metabolic imagingActive glucose metabolismGlial activationRecanalization therapyArtery occlusionIschemic strokeStroke severityCerebral perfusionC57BL/6 micePoor outcomeElevated lactate productionPathophysiological changesBaseline values
2022
Deuterium metabolic imaging of the human brain in vivo at 7 T
Roig E, De Feyter HM, Nixon TW, Ruhm L, Nikulin AV, Scheffler K, Avdievich NI, Henning A, de Graaf R. Deuterium metabolic imaging of the human brain in vivo at 7 T. Magnetic Resonance In Medicine 2022, 89: 29-39. PMID: 36063499, PMCID: PMC9756916, DOI: 10.1002/mrm.29439.Peer-Reviewed Original Research
2019
On the magnetic field dependence of deuterium metabolic imaging
de Graaf R, Hendriks AD, Klomp DWJ, Kumaragamage C, Welting D, de Castro C, Brown PB, McIntyre S, Nixon TW, Prompers JJ, De Feyter HM. On the magnetic field dependence of deuterium metabolic imaging. NMR In Biomedicine 2019, 33: e4235. PMID: 31879985, PMCID: PMC7141779, DOI: 10.1002/nbm.4235.Peer-Reviewed Original Research
2018
Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo
De Feyter HM, Behar KL, Corbin ZA, Fulbright RK, Brown PB, McIntyre S, Nixon TW, Rothman DL, de Graaf RA. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo. Science Advances 2018, 4: eaat7314. PMID: 30140744, PMCID: PMC6105304, DOI: 10.1126/sciadv.aat7314.Peer-Reviewed Original ResearchConceptsOral intakeMetabolic imagingGlucose uptakeHigh-grade brain tumorsRat glioma modelPositron emission tomography (PET) detectionSimilar metabolic patternMetabolic imaging techniquesDeuterium metabolic imagingHigher glucose uptakeGlucose analog 2FDG-PETF-fluoroIntravenous infusionBrain tumorsGlioma modelGlucose metabolismNormal brainTomography detectionAnimal modelsMagnetic resonance spectroscopicTumor tissueHuman liverMetabolic patternsNoninvasive approach
2017
In vivo proton observed carbon edited (POCE) 13C magnetic resonance spectroscopy of the rat brain using a volumetric transmitter and receive‐only surface coil on the proton channel
Kumaragamage C, Madularu D, Mathieu AP, De Feyter H, Rajah MN, Near J. In vivo proton observed carbon edited (POCE) 13C magnetic resonance spectroscopy of the rat brain using a volumetric transmitter and receive‐only surface coil on the proton channel. Magnetic Resonance In Medicine 2017, 79: 628-635. PMID: 28497464, DOI: 10.1002/mrm.26751.Peer-Reviewed Original Research
2016
Detection of cerebral NAD+ in humans at 7T
de Graaf R, De Feyter H, Brown PB, Nixon TW, Rothman DL, Behar KL. Detection of cerebral NAD+ in humans at 7T. Magnetic Resonance In Medicine 2016, 78: 828-835. PMID: 27670385, PMCID: PMC5366282, DOI: 10.1002/mrm.26465.Peer-Reviewed Original Research
2013
Increased Brain Lactate Concentrations Without Increased Lactate Oxidation During Hypoglycemia in Type 1 Diabetic Individuals
De Feyter HM, Mason GF, Shulman GI, Rothman DL, Petersen KF. Increased Brain Lactate Concentrations Without Increased Lactate Oxidation During Hypoglycemia in Type 1 Diabetic Individuals. Diabetes 2013, 62: 3075-3080. PMID: 23715622, PMCID: PMC3749358, DOI: 10.2337/db13-0313.Peer-Reviewed Original ResearchConceptsBrain lactate concentrationBlood-brain barrierHypoglycemia unawarenessLactate concentrationT1D subjectsControl subjectsType 1 diabetic subjectsType 1 diabetic individualsBlood-borne lactateNondiabetic control subjectsPlasma lactate concentrationMonocarboxylic acid transportDiabetic subjectsHypoglycemic clampT1D patientsDiabetic individualsBrain metabolismBrain fuelBrain glutamateBrain energeticsHypoglycemiaPatientsMetabolic adaptationAcid transportSubjectsIncreased Brain Transport and Metabolism of Acetate in Hypoglycemia Unawareness
Gulanski BI, De Feyter HM, Page KA, Belfort-DeAguiar R, Mason GF, Rothman DL, Sherwin RS. Increased Brain Transport and Metabolism of Acetate in Hypoglycemia Unawareness. The Journal Of Clinical Endocrinology & Metabolism 2013, 98: 3811-3820. PMID: 23796565, PMCID: PMC4425818, DOI: 10.1210/jc.2013-1701.Peer-Reviewed Original ResearchConceptsHypoglycemia-associated autonomic failureHypoglycemia unawarenessT1DM individualsEpinephrine levelsBrain transportControl groupType 1 diabetes mellitusDefective glucose counterregulationHealthy nondiabetic controlsSevere hypoglycemia unawarenessIntensive insulin therapyLong-term complicationsHospital research unitEntire study populationT1DM participantsAutonomic failureGlucose counterregulationInsulin therapyDiabetes mellitusNondiabetic controlsCerebral cortexAcute hypoglycemiaT1DM controlsCerebral energeticsStudy population
2011
13C MRS studies of neuroenergetics and neurotransmitter cycling in humans
Rothman DL, De Feyter HM, de Graaf R, Mason GF, Behar KL. 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR In Biomedicine 2011, 24: 943-957. PMID: 21882281, PMCID: PMC3651027, DOI: 10.1002/nbm.1772.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsNeurotransmitter cyclingMRS studiesHigh neuronal activityHuman brain diseasesOnly noninvasive methodBrain metabolismGlutamate neurotransmissionNeuronal activityPsychiatric diseasesNeuronal functionBrain diseasesBrain functionClinical researchNeuroenergeticsNoninvasive methodMRSMRS measurementsHuman researchDiseaseBrain statesRecent findingsImportant new informationHumansMetabolic pathwaysNeurotransmission