2024
Mechanism-centric regulatory network identifies NME2 and MYC programs as markers of Enzalutamide resistance in CRPC
Panja S, Truica M, Yu C, Saggurthi V, Craige M, Whitehead K, Tuiche M, Al-Saadi A, Vyas R, Ganesan S, Gohel S, Coffman F, Parrott J, Quan S, Jha S, Kim I, Schaeffer E, Kothari V, Abdulkadir S, Mitrofanova A. Mechanism-centric regulatory network identifies NME2 and MYC programs as markers of Enzalutamide resistance in CRPC. Nature Communications 2024, 15: 352. PMID: 38191557, PMCID: PMC10774320, DOI: 10.1038/s41467-024-44686-5.Peer-Reviewed Original Research
2021
Collagen type VI-α1 and 2 repress the proliferation, migration and invasion of bladder cancer cells
Piao X, Hwang B, Jeong P, Byun Y, Kang H, Seo S, Kim W, Lee J, Ha Y, Lee Y, Kim I, Choi Y, Cha E, Moon S, Yun S, Kim W. Collagen type VI-α1 and 2 repress the proliferation, migration and invasion of bladder cancer cells. International Journal Of Oncology 2021, 59: 37. PMID: 33982770, DOI: 10.3892/ijo.2021.5217.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overCell Line, TumorCell MovementCell ProliferationCollagen Type VIG1 Phase Cell Cycle CheckpointsGene Expression Regulation, NeoplasticHumansMiddle AgedP38 Mitogen-Activated Protein KinasesPhosphorylationProto-Oncogene Proteins c-aktSignal TransductionTranscription FactorsUrinary Bladder NeoplasmsConceptsNon-muscle invasive BCaExtracellular matrixMRNA expressionEJ cellsBladder cancer microenvironmentTissue samplesHeterogeneous tumor cell populationsCell cycle arrestReverse transcription-quantitative PCRTumor-suppressive effectsBladder cancer cellsP38 MAPK phosphorylationTranscription-quantitative PCRCollagen typesRisk stratificationInvasive BCaTumor infiltrationTumor cell populationBCa pathogenesisMMP-9MAPK phosphorylationAkt phosphorylationCycle arrestNormal controlsMatrix metalloproteinase
2017
Garlic extract in bladder cancer prevention: Evidence from T24 bladder cancer cell xenograft model, tissue microarray, and gene network analysis
Kim W, Seo S, Byun Y, Kang H, Kim Y, Lee S, Jeong P, Seo Y, Choe S, Kim D, Kim S, Moon S, Choi Y, Lee G, Kim I, Yun S, Kim W. Garlic extract in bladder cancer prevention: Evidence from T24 bladder cancer cell xenograft model, tissue microarray, and gene network analysis. International Journal Of Oncology 2017, 51: 204-212. PMID: 28498422, DOI: 10.3892/ijo.2017.3993.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBiomarkers, TumorCell ProliferationGarlicGene Expression Regulation, NeoplasticGene Regulatory NetworksHumansMaleMiceMice, Inbred BALB CMice, NudePlant ExtractsSignal TransductionTissue Array AnalysisTumor Cells, CulturedUrinary Bladder NeoplasmsXenograft Model Antitumor AssaysConceptsCancer preventionBladder cancerGarlic extractXenograft modelNude mouse xenograft modelAcceptable safety profileBladder cancer preventionCancer prevention activitiesCell xenograft modelBALB/cTissue microarray analysisMouse xenograft modelMicroarray analysisTumor weightBC patientsSafety profileTumor volumeTissue microarrayControl groupGene network analysisControl dietPrevention activitiesPreventionExtract intakePotential mechanisms
2013
Mechanism of pro‐tumorigenic effect of BMP‐6: Neovascularization involving tumor‐associated macrophages and IL‐1α
Kwon S, Lee G, Lee J, Iwakura Y, Kim W, Kim I. Mechanism of pro‐tumorigenic effect of BMP‐6: Neovascularization involving tumor‐associated macrophages and IL‐1α. The Prostate 2013, 74: 121-133. PMID: 24185914, DOI: 10.1002/pros.22734.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Morphogenetic Protein 6CarcinogenesisCell DifferentiationCell Line, TumorCell ProliferationCoculture TechniquesEndothelium, VascularHumansInterleukin-1alphaMacrophagesMaleMiceMice, Inbred C57BLMice, KnockoutNeovascularization, PathologicNF-kappa BProstatic NeoplasmsSignal TransductionSmad1 ProteinConceptsBone morphogenetic protein 6Prostate cancer growthTumor-associated macrophagesIL-1APro-tumorigenic effectsCancer growthHuman prostate cancer cell linesHuman prostate cancer tissuesLNCaP human prostate cancer cell lineProstate cancer cell linesTube formationProstate cancer tissuesTHP-1 cellsEndothelial tube formationCancer cell linesIL-1αProstate cancerKnockout miceCD11b-DTRCancer tissuesTumor growthNF-kB1Endothelial cellsMacrophagesConditioned mediaEnzalutamide for the treatment of castration-resistant prostate cancer.
Ha Y, Goodin S, DiPaola R, Kim I. Enzalutamide for the treatment of castration-resistant prostate cancer. Drugs Of Today 2013, 49: 7-13. PMID: 23362491, DOI: 10.1358/dot.2013.49.1.1910724.Peer-Reviewed Original ResearchConceptsCastration-resistant prostate cancerPhase III trialsAndrogen receptorIII trialsProstate cancerTreatment of CRPCMetastatic castration-resistant prostate cancerPhase I/II studyEffectiveness of enzalutamidePrior docetaxel chemotherapyBinding of AROptimal safety profileMajor clinical challengeSignificant antitumor activityPrior chemotherapyDocetaxel chemotherapyII studySafety profileClinical challengePreclinical studiesDrug AdministrationTumor growthChemotherapyU.S. FoodAntitumor activity
2012
CREBZF, a novel Smad8-binding protein
Lee J, Lee G, Kwon S, Jeong J, Ha Y, Kim W, Kim I. CREBZF, a novel Smad8-binding protein. Molecular And Cellular Biochemistry 2012, 368: 147-153. PMID: 22707059, DOI: 10.1007/s11010-012-1353-4.Peer-Reviewed Original ResearchConceptsSmads 1Novel SmadTranscription factorsBMP-6Basic region-leucine zipper (bZIP) transcription factorsBone morphogenetic protein (BMP) pathwayRegulation of SmadTwo-hybrid screeningModulation of BMPBMP response elementZipper transcription factorTGF-β signal pathwayR-SmadsReceptor SmadsBMP pathwaySecondary messengersPromoter activityLigand bindingProtein pathwayResponse elementProstate cancer cell linesCell growth inhibitionHuman prostate cancer cell linesSmadSignal pathway
2011
Bone morphogenetic protein 6-induced interleukin-1β expression in macrophages requires PU.1/Smad1 interaction
Lee G, Jung Y, Lee J, Kim W, Kim I. Bone morphogenetic protein 6-induced interleukin-1β expression in macrophages requires PU.1/Smad1 interaction. Molecular Immunology 2011, 48: 1540-1547. PMID: 21571370, DOI: 10.1016/j.molimm.2011.04.019.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Morphogenetic Protein 6Bone Morphogenetic Protein Receptors, Type IBone Morphogenetic Protein Receptors, Type IICells, CulturedExtracellular Signal-Regulated MAP KinasesFluorescent Antibody TechniqueImmunoblottingImmunoprecipitationInterleukin-1betaJNK Mitogen-Activated Protein KinasesMacrophagesMiceNitric Oxide Synthase Type IIProto-Oncogene ProteinsReverse Transcriptase Polymerase Chain ReactionSignal TransductionSmad1 ProteinTrans-Activators
2010
Induction of Interleukin-6 Expression by Bone Morphogenetic Protein-6 in Macrophages Requires Both SMAD and p38 Signaling Pathways*
Lee G, Kwon S, Lee J, Jeon S, Jang K, Choi H, Lee H, Kim W, Kim S, Kim I. Induction of Interleukin-6 Expression by Bone Morphogenetic Protein-6 in Macrophages Requires Both SMAD and p38 Signaling Pathways*. Journal Of Biological Chemistry 2010, 285: 39401-39408. PMID: 20889504, PMCID: PMC2998138, DOI: 10.1074/jbc.m110.103705.Peer-Reviewed Original ResearchConceptsBone morphogenetic protein 6BMP receptor type IIProtein 6Activin-like kinase 2Non-Smad pathwaysTranscription factor GATA4P38 Signaling PathwayTarget genesKnockdown experimentsKinase 2Signaling pathwaysSignaling mechanismReceptor type IISmadIntracellular levelsIL-6 inductionPathwayGrowth factorInductionExpressionInterleukin-6 expressionTranscriptionMacrophagesGenesGATA4
2009
Bone morphogenetic protein‐6 induces the expression of inducible nitric oxide synthase in macrophages
Kwon S, Lee G, Lee J, Kim W, Kim I. Bone morphogenetic protein‐6 induces the expression of inducible nitric oxide synthase in macrophages. Immunology 2009, 128: e758-e765. PMID: 19740337, PMCID: PMC2753926, DOI: 10.1111/j.1365-2567.2009.03079.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, NeutralizingBone Morphogenetic Protein 6Cells, CulturedCycloheximideDactinomycinHumansInterleukin-1betaMacrophages, PeritonealMiceNF-kappa BNitric Oxide Synthase Type IIProtein Synthesis InhibitorsRecombinant ProteinsSignal TransductionSmad ProteinsTumor Necrosis Factor-alphaConceptsBone morphogenetic proteinBMP-6Effects of BMPBone morphogenetic protein 6New protein synthesisMorphogenetic proteinsMurine macrophage cell lineMacrophage cell lineImportant regulatorProtein synthesisProtein 6Cell typesMouse peritoneal macrophagesCell linesActinomycin DNF-kappaBSmadExpressionDose-dependent mannerSynthaseNitric oxide synthasePathwayInductionInducible nitric oxide synthasePeritoneal macrophages
2006
Role of bone morphogenetic proteins in transitional cell carcinoma cells
Kim I, Kim S. Role of bone morphogenetic proteins in transitional cell carcinoma cells. Cancer Letters 2006, 241: 118-123. PMID: 16500023, DOI: 10.1016/j.canlet.2005.10.009.Peer-Reviewed Original ResearchMeSH KeywordsBone Morphogenetic ProteinsCarcinoma, Transitional CellCell Line, TumorHumansSignal TransductionUrinary Bladder Neoplasms
2004
Restoration of Bone Morphogenetic Protein Receptor Type II Expression Leads to a Decreased Rate of Tumor Growth in Bladder Transitional Cell Carcinoma Cell Line TSU-Pr1
Kim I, Lee D, Lee D, Kim W, Kim M, Morton R, Lerner S, Kim S. Restoration of Bone Morphogenetic Protein Receptor Type II Expression Leads to a Decreased Rate of Tumor Growth in Bladder Transitional Cell Carcinoma Cell Line TSU-Pr1. Cancer Research 2004, 64: 7355-7360. PMID: 15492256, DOI: 10.1158/0008-5472.can-04-0154.Peer-Reviewed Original ResearchConceptsTSU-Pr1Cell line TSU-Pr1BMP-RIITumor growthBladder transitional cell carcinoma cellsHuman bladder cancer cell linesCell linesTransitional cell carcinoma cellsBladder cancer cell linesBone morphogenetic protein receptor type II (BMPR2) expressionBone morphogenetic proteinTSU-Pr1 cellsBladder TCC tissuesGrowth inhibitory effectsCancer cell linesBladder specimensType II expressionBladder TCCTumor gradeTransitional epitheliumClinical observationsTCC tissuesMalignant cellsSignificant associationBMP-RIA
2002
The Human Papilloma Virus E7 Oncoprotein Inhibits Transforming Growth Factor-β Signaling by Blocking Binding of the Smad Complex to Its Target Sequence*
Lee D, Kim B, Kim I, Cho E, Satterwhite D, Kim S. The Human Papilloma Virus E7 Oncoprotein Inhibits Transforming Growth Factor-β Signaling by Blocking Binding of the Smad Complex to Its Target Sequence*. Journal Of Biological Chemistry 2002, 277: 38557-38564. PMID: 12145312, DOI: 10.1074/jbc.m206786200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCyclin-Dependent KinasesDNADNA-Binding ProteinsFemaleGenes, ReporterHumansOncogene Proteins, ViralPapillomaviridaeProtein BindingSignal TransductionSmad ProteinsTrans-ActivatorsTranscription, GeneticTransforming Growth Factor betaTransforming Growth Factor beta1Uterine Cervical NeoplasmsConceptsHuman papillomavirus (HPV) oncoprotein E7HPV-positive cellsCervical cancerTGF-beta signalingSuppression of SmadConfocal microscopic studiesE7 oncoproteinsOncoprotein E7Growth inhibitory activitySmad transcriptional activityHPVE7Inhibitory activityMicroscopic studyTranscriptional activityDNA synthesisSmadSmad proteinsSignalingEtiologyCancerInfectionPRB
1998
Prostate cancer cell growth inhibition by tamoxifen is associated with inhibition of protein kinase C and induction of p21waf1/cip1
Rohlff C, Blagosklonny M, Kyle E, Kesari A, Kim I, Zelner D, Hakim F, Trepel J, Bergan R. Prostate cancer cell growth inhibition by tamoxifen is associated with inhibition of protein kinase C and induction of p21waf1/cip1. The Prostate 1998, 37: 51-59. PMID: 9721069, DOI: 10.1002/(sici)1097-0045(19980915)37:1<51::aid-pros8>3.0.co;2-b.Peer-Reviewed Original ResearchConceptsProstate cancer cell growthCancer cell growthProtein kinase CHormone-refractory prostate cancerProstate cancer cell growth inhibitionGrowth inhibitionInhibition of PKCG1/S phase cell cycle arrestTamoxifen-mediated growth inhibitionCancer cell growth inhibitionProstate cancer cellsPhase cell cycle arrestDU145 prostate cancer cellsS-phase cell cycle arrestRetinoblastoma protein levelsFlow cytometric analysisP21WAF1/CIP1Cell growth inhibitionTamoxifen treatmentCell cycle arrestCell growthProstate cancerKinase CCytometric analysisWestern blotThe Conventional Transforming Growth Factor-β (TGF-β) Receptor Type I Is Not Required for TGF-β1 Signaling in a Human Prostate Cancer Cell Line, LNCaP
Kim I, Zelner D, Lee C. The Conventional Transforming Growth Factor-β (TGF-β) Receptor Type I Is Not Required for TGF-β1 Signaling in a Human Prostate Cancer Cell Line, LNCaP. Experimental Cell Research 1998, 241: 151-160. PMID: 9633523, DOI: 10.1006/excr.1998.4034.Peer-Reviewed Original ResearchMeSH KeywordsActivin Receptors, Type IDihydrotestosteroneGene ExpressionHumansMaleProstatic NeoplasmsProtein Serine-Threonine KinasesReceptor, Transforming Growth Factor-beta Type IReceptor, Transforming Growth Factor-beta Type IIReceptors, Transforming Growth Factor betaRNA, MessengerSensitivity and SpecificitySignal TransductionTransforming Growth Factor betaTumor Cells, CulturedConceptsHuman prostate cancer cell linesCompetitive quantitative RT-PCRProstate cancer cell linesType II receptorLNCaP cellsII receptorsWestern blot analysisQuantitative RT-PCRCancer cell linesTGF-beta signalingALK-5RT-PCRALK-1Androgen-responsive human prostate cancer cell lineGrowth factor-β receptor type IType II receptor mRNAReceptor type IConcentrations of dihydrotestosteroneTGF-β1 signalingCell linesBlot analysisType INM dihydrotestosteroneReceptor mRNADihydrotestosterone
1996
Transforming growth factor-beta1 is a mediator of androgen-regulated growth arrest in an androgen-responsive prostatic cancer cell line, LNCaP
Kim I, Kim J, Zelner D, Ahn H, Sensibar J, Lee C. Transforming growth factor-beta1 is a mediator of androgen-regulated growth arrest in an androgen-responsive prostatic cancer cell line, LNCaP. Endocrinology 1996, 137: 991-999. PMID: 8603613, DOI: 10.1210/endo.137.3.8603613.Peer-Reviewed Original ResearchConceptsDoses of dihydrotestosteroneProstatic cancer cell linesLNCaP cellsCancer cell linesTGF-beta1 messenger RNART-PCRCompetitive quantitative RT-PCRTGF-beta1 proteinDose-dependent increaseGrowth arrestEnzyme-linked immunoadsorbent assayCell linesTGF-beta1 neutralizing antibodyActivation of latentDose-response curveMessenger RNALNCaP proliferationQuantitative RT-PCRWestern blot analysisNeutralizing antibodiesLinear dose-response curveHigh doseTGF-beta1Immunoadsorbent assayGrowth factorGenetic change in transforming growth factor beta (TGF-beta) receptor type I gene correlates with insensitivity to TGF-beta 1 in human prostate cancer cells.
Kim I, Ahn H, Zelner D, Shaw J, Sensibar J, Kim J, Kato M, Lee C. Genetic change in transforming growth factor beta (TGF-beta) receptor type I gene correlates with insensitivity to TGF-beta 1 in human prostate cancer cells. Cancer Research 1996, 56: 44-8. PMID: 8548772.Peer-Reviewed Original ResearchConceptsProstate cancer cell linesLNCaP cellsProstate cancer cellsType I receptorT beta RCancer cell linesI geneDU145 cellsGenetic changesTGF-beta receptor type III receptorTGF-beta receptor expressionGrowth factor beta 1Beta RCancer cellsHuman prostate cancer cellsProliferation of PC3TGF-beta signalsBlot analysisReceptor type IICell linesDose-dependent mannerSouthern blot analysisType I geneType II receptor