2024
Prior knowledge-guided vision-transformer-based unsupervised domain adaptation for intubation prediction in lung disease at one week
Yang J, Henao J, Dvornek N, He J, Bower D, Depotter A, Bajercius H, de Mortanges A, You C, Gange C, Ledda R, Silva M, Dela Cruz C, Hautz W, Bonel H, Reyes M, Staib L, Poellinger A, Duncan J. Prior knowledge-guided vision-transformer-based unsupervised domain adaptation for intubation prediction in lung disease at one week. Computerized Medical Imaging And Graphics 2024, 118: 102442. DOI: 10.1016/j.compmedimag.2024.102442.Peer-Reviewed Original ResearchUnsupervised domain adaptationSpatial prior informationDomain adaptationLabeled dataData-driven approachUnsupervised domain adaptation modelMedical image analysis tasksImage analysis tasksTransformer-based modelsMedical image analysisPrior informationOutcome prediction tasksAdversarial trainingDistribution alignmentDomain shiftAttention headsClass tokenPoor generalizationAnalysis tasksTarget domainPrediction taskData distributionKnowledge-guidedLocal weightsMedical imagesMedical image registration via neural fields
Sun S, Han K, You C, Tang H, Kong D, Naushad J, Yan X, Ma H, Khosravi P, Duncan J, Xie X. Medical image registration via neural fields. Medical Image Analysis 2024, 97: 103249. PMID: 38963972, DOI: 10.1016/j.media.2024.103249.Peer-Reviewed Original ResearchLearning-based methodsNeural fieldsNeural networkImage registrationMedical image analysis tasksMini-batch gradient descentImage analysis tasksDeep neural networksMedical image registrationDiffeomorphic image registrationImage registration frameworkOptimization-based methodDomain shiftAnalysis tasksGradient descentCompetitive performanceImage pairsRegistration taskOptimal deformationShort computation timeRegistration frameworkDesign choicesDisplacement vector fieldComputation timeModel optimization
2022
Federated Transfer Learning for Low-Dose PET Denoising: A Pilot Study With Simulated Heterogeneous Data
Zhou B, Miao T, Mirian N, Chen X, Xie H, Feng Z, Guo X, Li X, Zhou S, Duncan J, Liu C. Federated Transfer Learning for Low-Dose PET Denoising: A Pilot Study With Simulated Heterogeneous Data. IEEE Transactions On Radiation And Plasma Medical Sciences 2022, 7: 284-295. PMID: 37789946, PMCID: PMC10544830, DOI: 10.1109/trpms.2022.3194408.Peer-Reviewed Original ResearchLow-dose PETMedical data privacy regulationsFederated learning algorithmLarge domain shiftTransfer learning frameworkData privacy regulationsHigh-quality reconstructionFederated transferData privacyHeterogeneous dataDomain shiftLearning frameworkLearning algorithmPrivacy regulationsData distributionCollaborative trainingLow-dose dataPET reconstructionPrevious methodsFL methodEfficient wayLocal dataSuperior performanceExperimental resultsDenoising
2019
Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation
Yang J, Dvornek NC, Zhang F, Chapiro J, Lin M, Duncan JS. Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation. Lecture Notes In Computer Science 2019, 11765: 255-263. PMID: 32377643, PMCID: PMC7202929, DOI: 10.1007/978-3-030-32245-8_29.Peer-Reviewed Original ResearchDice similarity coefficientDomain adaptationContent spaceDomain shiftTarget domainCross-modality domain adaptationUnsupervised domain adaptation methodsDiverse image generationLiver segmentation taskDeep learning modelsDifferent target domainUnlabeled target dataFeature-level informationUnsupervised domain adaptationDomain adaptation methodsMulti-phasic MRISegmentation taskSegmentation performanceSegmentation modelImage generationLiver segmentationStyle transferDisentangled representationsBetter generalizationSource domain