2023
Rethinking Semi-Supervised Medical Image Segmentation: A Variance-Reduction Perspective.
You C, Dai W, Min Y, Liu F, Clifton D, Zhou S, Staib L, Duncan J. Rethinking Semi-Supervised Medical Image Segmentation: A Variance-Reduction Perspective. Advances In Neural Information Processing Systems 2023, 36: 9984-10021. PMID: 38813114, PMCID: PMC11136570.Peer-Reviewed Original ResearchMedical image segmentationContrastive learningImage segmentationSemi-supervised medical image segmentationSemi-supervised contrastive learningSelf-supervised objectiveSemantic segmentation datasetsSemi-supervised methodGround-truth labelsQuality of visual representationSafety-critical tasksSegmentation datasetTail classesSegmentation taskLabel setsTruth labelsCL frameworkNegative examplesModel collapseVariance-reductionVariance-reduction techniquesVisual representationTaskLearningPairs of samples
2022
Simultaneous Segmentation and Motion Estimation of Left Ventricular Myocardium in 3D Echocardiography Using Multi-task Learning
Ta K, Ahn SS, Stendahl JC, Langdon J, Sinusas AJ, Duncan JS. Simultaneous Segmentation and Motion Estimation of Left Ventricular Myocardium in 3D Echocardiography Using Multi-task Learning. Lecture Notes In Computer Science 2022, 13131: 123-131. PMID: 35759335, PMCID: PMC9221412, DOI: 10.1007/978-3-030-93722-5_14.Peer-Reviewed Original ResearchMotion estimationMulti-task learning networkMedical image analysis literatureMulti-task learningSingle-task learningMotion estimation techniqueImage analysis literatureComputer visionDecoding branchesFeature encoderLearning frameworkLearning networkLatent featuresAccurate segmentationSimultaneous segmentationEstimate motionImage pairsTask learningRealistic motion patternsVolumetric segmentationSegmentationMotion patternsTaskUnique taskLearning
2021
Anatomy-Constrained Contrastive Learning for Synthetic Segmentation Without Ground-Truth
Zhou B, Liu C, Duncan J. Anatomy-Constrained Contrastive Learning for Synthetic Segmentation Without Ground-Truth. Lecture Notes In Computer Science 2021, 12901: 47-56. DOI: 10.1007/978-3-030-87193-2_5.Peer-Reviewed Original ResearchSegmentation networkContrastive learningManual segmentationSuperior segmentation performanceObject of interestSynthetic SegmentationManual effortSegmentation performanceTraining dataUnsupervised adaptationImaging dataSource modalitySegmentationNetworkPrevious methodsLearningLarge amountSuccessful applicationPET imaging dataImagesObjectsCodeDataNew imaging modality
2020
Sparse Data–Driven Learning for Effective and Efficient Biomedical Image Segmentation
Onofrey JA, Staib LH, Huang X, Zhang F, Papademetris X, Metaxas D, Rueckert D, Duncan JS. Sparse Data–Driven Learning for Effective and Efficient Biomedical Image Segmentation. Annual Review Of Biomedical Engineering 2020, 22: 1-27. PMID: 32169002, PMCID: PMC9351438, DOI: 10.1146/annurev-bioeng-060418-052147.Peer-Reviewed Original Research
2019
Domain-Agnostic Learning with Anatomy-Consistent Embedding for Cross-Modality Liver Segmentation
Yang J, Dvornek NC, Zhang F, Zhuang J, Chapiro J, Lin M, Duncan JS. Domain-Agnostic Learning with Anatomy-Consistent Embedding for Cross-Modality Liver Segmentation. ICCV Workshops 2019, 00: 323-331. PMID: 34676308, PMCID: PMC8528125, DOI: 10.1109/iccvw.2019.00043.Peer-Reviewed Original ResearchDomain adaptationDisentangled representationsLiver segmentationTarget domainSource domainDeep learning modelsGenerative adversarial networkHuman interpretabilityLearning frameworkAdversarial networkDownstream tasksArt methodsSegmentation consistencyLearning modelAgnostic learningMeaningful representationCycleGANNew tasksAblation analysisDA taskDifferent modalitiesTaskSegmentationEmbeddingLearning
2018
2-Channel Convolutional 3D Deep Neural Network (2CC3D) for FMRI Analysis: ASD Classification and Feature Learning
Li X, Dvornek NC, Papademetris X, Zhuang J, Staib LH, Ventola P, Duncan JS. 2-Channel Convolutional 3D Deep Neural Network (2CC3D) for FMRI Analysis: ASD Classification and Feature Learning. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2018, 2018: 1252-1255. PMID: 32983370, PMCID: PMC7519578, DOI: 10.1109/isbi.2018.8363798.Peer-Reviewed Original ResearchConvolutional neural networkNeural networkCNN convolutional layerSpatial featuresASD classificationDeep neural networksMean F-scoreTraditional machineFeature learningConvolutional layersInput formatF-scoreClassification modelTemporal informationNetworkWindow parametersImagesClassificationConvolutionalTemporal statisticsMachineLearningFeaturesFormatScheme