Featured Publications
Oncogene-like addiction to aneuploidy in human cancers
Girish V, Lakhani A, Thompson S, Scaduto C, Brown L, Hagenson R, Sausville E, Mendelson B, Kandikuppa P, Lukow D, Yuan M, Stevens E, Lee S, Schukken K, Akalu S, Vasudevan A, Zou C, Salovska B, Li W, Smith J, Taylor A, Martienssen R, Liu Y, Sun R, Sheltzer J. Oncogene-like addiction to aneuploidy in human cancers. Science 2023, 381: eadg4521. PMID: 37410869, PMCID: PMC10753973, DOI: 10.1126/science.adg4521.Peer-Reviewed Original Research
2021
Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies
Lukow DA, Sausville EL, Suri P, Chunduri NK, Wieland A, Leu J, Smith JC, Girish V, Kumar AA, Kendall J, Wang Z, Storchova Z, Sheltzer JM. Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Developmental Cell 2021, 56: 2427-2439.e4. PMID: 34352222, PMCID: PMC8933054, DOI: 10.1016/j.devcel.2021.07.009.Peer-Reviewed Original ResearchConceptsChromosomal instabilityAnti-cancer therapyCancer cell fitnessAcquisition of aneuploidyChromosome loss eventsSingle-cell sequencingEvolution of resistanceDifferent culture environmentsCellular fitnessPhenotypic plasticityCIN correlatesHuman tumorsCell fitnessHuman cellsStressful environmentsResistant populationsAcquisition of resistanceRecurrent aneuploidyCancer cellsPaclitaxel-resistant cellsCulture environmentAneuploidyPaclitaxel sensitivityFitnessCells
2019
Micronuclei-based model system reveals functional consequences of chromothripsis in human cells
Kneissig M, Keuper K, de Pagter MS, van Roosmalen MJ, Martin J, Otto H, Passerini V, Sparr A, Renkens I, Kropveld F, Vasudevan A, Sheltzer JM, Kloosterman WP, Storchova Z. Micronuclei-based model system reveals functional consequences of chromothripsis in human cells. ELife 2019, 8: e50292. PMID: 31778112, PMCID: PMC6910827, DOI: 10.7554/elife.50292.Peer-Reviewed Original ResearchConceptsMassive chromosomal rearrangementsChromosomal rearrangementsHuman cellsLamin B1Replication-dependent mechanismModel systemMicronucleus sizeProper assemblyAberrant replicationChromosome shatteringChromosome transferMembrane curvatureNuclear envelopeExtra chromosomeAberrant structuresDNA damageChromosomesGrowth advantageFunctional consequencesCancer cellsAbnormal numberTrisomic cellsCellsChromosomal aberrationsRearrangement
2017
Single-chromosome Gains Commonly Function as Tumor Suppressors
Sheltzer J, Ko J, Replogle J, Burgos N, Chung E, Meehl C, Sayles N, Passerini V, Storchova Z, Amon A. Single-chromosome Gains Commonly Function as Tumor Suppressors. Cancer Cell 2017, 31: 240-255. PMID: 28089890, PMCID: PMC5713901, DOI: 10.1016/j.ccell.2016.12.004.Peer-Reviewed Original ResearchConceptsSingle chromosome gainsSingle extra chromosomeEffects of aneuploidyHallmarks of cancerEvolutionary flexibilityFitness defectsEuploid cellsTumor suppressorExtra chromosomeEuploid counterpartsOncogenic pathwaysProlonged growthChromosomal alterationsCancer developmentCell linesTrisomic cellsImproved fitnessAneuploidyTrisomic cell lineCellsChromosomesSuppressorAdditional chromosomal alterationsGrowthTumorigenesis
2011
The aneuploidy paradox: costs and benefits of an incorrect karyotype
Sheltzer J, Amon A. The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends In Genetics 2011, 27: 446-453. PMID: 21872963, PMCID: PMC3197822, DOI: 10.1016/j.tig.2011.07.003.Peer-Reviewed Original ResearchConceptsCell proliferationRole of aneuploidyHallmarks of cancerExperimental evolutionEnhanced proliferative capacityCellular phenotypesChromosomal instabilityAneuploid cellsNormal cellsKaryotypic imbalancesProliferative capacityAneuploidyDiverse effectsProliferationCellsPhenotypeMicroorganismsKaryotypeHallmark