2022
Secondary Metabolism Gene Clusters Exhibit Increasingly Dynamic and Differential Expression during Asexual Growth, Conidiation, and Sexual Development in Neurospora crassa
Wang Z, Lopez-Giraldez F, Slot J, Yarden O, Trail F, Townsend JP. Secondary Metabolism Gene Clusters Exhibit Increasingly Dynamic and Differential Expression during Asexual Growth, Conidiation, and Sexual Development in Neurospora crassa. MSystems 2022, 7: e00232-22. PMID: 35638725, PMCID: PMC9239088, DOI: 10.1128/msystems.00232-22.Peer-Reviewed Original ResearchConceptsSM clustersComparative genomicsSecondary metabolitesAsexual growthN. crassaNeurospora crassaSecondary metabolism gene clustersSexual developmentDevelopmental stagesSecondary metabolite clustersComparative genomic analysisExtensive transcriptomic dataGene expression patternsEnvironmental conditionsFungal toxin productionLevel of RNASMC genesLife cycleRegulatory switchComputational annotationGene clusterEnvironmental signalsMetabolite clustersGenomic analysisKnockout phenotypes
2017
The ancestral levels of transcription and the evolution of sexual phenotypes in filamentous fungi
Trail F, Wang Z, Stefanko K, Cubba C, Townsend JP. The ancestral levels of transcription and the evolution of sexual phenotypes in filamentous fungi. PLOS Genetics 2017, 13: e1006867. PMID: 28704372, PMCID: PMC5509106, DOI: 10.1371/journal.pgen.1006867.Peer-Reviewed Original ResearchConceptsGene expressionFilamentous fungiCommon garden environmentBody developmentWide gene expressionGene expression phenotypesGene deletion studiesGene expression measurementsMulticellular developmentDivergent speciesSexual phenotypeGene familyEvolved increasesDivergent morphologyKnockout phenotypesAncestral levelsWhole genomeGarden environmentExpression phenotypesDeletion studiesRelevant genesPhenotypic analysisDevelopmental stagesExpression measurementsBody morphology
2005
Designing Experiments Using Spotted Microarrays to Detect Gene Regulation Differences Within and Among Species
Townsend JP, Taylor JW. Designing Experiments Using Spotted Microarrays to Detect Gene Regulation Differences Within and Among Species. Methods In Enzymology 2005, 395: 597-617. PMID: 15865986, DOI: 10.1016/s0076-6879(05)95031-3.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsGene expressionGenome-wide gene expressionGene regulation differencesDifferential gene expressionMultiple developmental stagesMultiple environmental conditionsMultiple speciesDevelopmental stagesRegulation differencesSpeciesEnvironmental conditionsMultiple individualsMicroarrayExpressionSuch studiesStatistical powerExperimental protocol