Featured Publications
Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function
Schiapparelli P, Pirman NL, Mohler K, Miranda-Herrera PA, Zarco N, Kilic O, Miller C, Shah SR, Rogulina S, Hungerford W, Abriola L, Hoyer D, Turk BE, Guerrero-Cázares H, Isaacs FJ, Quiñones-Hinojosa A, Levchenko A, Rinehart J. Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function. Cell Reports 2021, 36: 109416. PMID: 34289367, PMCID: PMC8379681, DOI: 10.1016/j.celrep.2021.109416.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCell Line, TumorCell MovementCell ProliferationEscherichia coliFemaleGlioblastomaHEK293 CellsHumansMaleMice, NudeMiddle AgedPhosphorylationPhosphoserineProtein Serine-Threonine KinasesRecombinant ProteinsSignal TransductionSmall Molecule LibrariesSubstrate SpecificityWNK Lysine-Deficient Protein Kinase 1ConceptsKinase networkAuthentic post-translational modificationsGenetic code expansionPost-translational modificationsProduction of proteinsSmall molecule kinase inhibitorsKinase inhibitorsGenetic codePhosphorylated proteinsCode expansionKinase proteinWNK kinasesPhysiological functionsWNK4 kinaseBiochemical propertiesGlioblastoma cellsKinaseBacterial strainsProteinDistinct sitesPhosphoserineSPAKBacteriaCellular systemsCellsTargeting Pyruvate Kinase M2 Phosphorylation Reverses Aggressive Cancer Phenotypes
Apostolidi M, Vathiotis IA, Muthusamy V, Gaule P, Gassaway BM, Rimm DL, Rinehart J. Targeting Pyruvate Kinase M2 Phosphorylation Reverses Aggressive Cancer Phenotypes. Cancer Research 2021, 81: 4346-4359. PMID: 34185676, PMCID: PMC8373815, DOI: 10.1158/0008-5472.can-20-4190.Peer-Reviewed Original ResearchMeSH KeywordsActive Transport, Cell NucleusAnimalsBiomarkers, TumorCarrier ProteinsCell Line, TumorCollagenCyclic N-OxidesDrug CombinationsGenome, HumanHumansIndolizinesLamininMCF-7 CellsMembrane ProteinsMiceNeoplasm InvasivenessNeoplasm TransplantationNeoplasmsOxidation-ReductionPhenotypePhosphorylationProtein IsoformsProteoglycansProteomicsPyridazinesPyridinium CompoundsPyrrolesPyruvate KinaseThyroid HormonesTriple Negative Breast NeoplasmsConceptsTriple-negative breast cancerPyruvate kinase M2TEPP-46Breast cancerAggressive breast cancer cell phenotypesCharacteristic nuclear staining patternAggressive breast cancer subtypeAggressive breast cancer phenotypeBreast cancer cell phenotypeCDK inhibitor dinaciclibCombination of dinaciclibLack of biomarkersEffective therapeutic approachBreast cancer phenotypeBreast cancer subtypesCancer phenotypePhosphorylation of PKM2Cyclin-dependent kinase (CDK) pathwayMouse xenograft modelAggressive cancer phenotypeNuclear staining patternLower survival rateImpaired redox balancePrognostic valueCancer cell phenotypeA flexible codon in genomically recoded Escherichia coli permits programmable protein phosphorylation
Pirman NL, Barber KW, Aerni HR, Ma NJ, Haimovich AD, Rogulina S, Isaacs FJ, Rinehart J. A flexible codon in genomically recoded Escherichia coli permits programmable protein phosphorylation. Nature Communications 2015, 6: 8130. PMID: 26350500, PMCID: PMC4566969, DOI: 10.1038/ncomms9130.Peer-Reviewed Original ResearchConceptsProtein phosphorylationProtein phosphorylation eventsFull-length proteinNon-phosphorylated formPhosphoserine-containing proteinsPhosphorylation eventsMEK1 kinaseUAG codonKinase activityRecombinant DNADNA templateEscherichia coliE. coliCodonPhosphorylationFunctional informationSerineProteinColiBiochemical investigationsPhosphoproteomeInefficient productionKinasePhosphoserineDNAEncoding human serine phosphopeptides in bacteria for proteome-wide identification of phosphorylation-dependent interactions
Barber KW, Muir P, Szeligowski RV, Rogulina S, Gerstein M, Sampson JR, Isaacs FJ, Rinehart J. Encoding human serine phosphopeptides in bacteria for proteome-wide identification of phosphorylation-dependent interactions. Nature Biotechnology 2018, 36: 638-644. PMID: 29889213, PMCID: PMC6590076, DOI: 10.1038/nbt.4150.Peer-Reviewed Original Research
2024
Structural bases for Na+-Cl− cotransporter inhibition by thiazide diuretic drugs and activation by kinases
Zhao Y, Schubert H, Blakely A, Forbush B, Smith M, Rinehart J, Cao E. Structural bases for Na+-Cl− cotransporter inhibition by thiazide diuretic drugs and activation by kinases. Nature Communications 2024, 15: 7006. PMID: 39143061, PMCID: PMC11324901, DOI: 10.1038/s41467-024-51381-y.Peer-Reviewed Original ResearchConceptsNa+-Cl- cotransporterFamilial hyperkalemic hypertensionRenal salt retentionThiazide diuretic drugsNa+-Cl-Cotransporter inhibitionNCC activitySalt reabsorptionDiuretic drugsBlood pressureBalanced electrolyteTreat hypertensionIon translocation pathwayIon translocationThiazideHypertensionSalt retentionOrthosteric siteCo-structureCarboxyl-terminal domainKinase cascadeEdemaChlorthalidoneCotransporterTranslocation
2023
SPAK-dependent cotransporter activity mediates capillary adhesion and pressure during glioblastoma migration in confined spaces.
Lee S, Yousafzai M, Mohler K, Yadav V, Amiri S, Szuszkiewicz J, Levchenko A, Rinehart J, Murrell M. SPAK-dependent cotransporter activity mediates capillary adhesion and pressure during glioblastoma migration in confined spaces. Molecular Biology Of The Cell 2023, 34: ar122. PMID: 37672340, PMCID: PMC10846615, DOI: 10.1091/mbc.e23-03-0103.Peer-Reviewed Original ResearchSystem‐wide optimization of an orthogonal translation system with enhanced biological tolerance
Mohler K, Moen J, Rogulina S, Rinehart J. System‐wide optimization of an orthogonal translation system with enhanced biological tolerance. Molecular Systems Biology 2023, 19: msb202110591. PMID: 37477096, PMCID: PMC10407733, DOI: 10.15252/msb.202110591.Peer-Reviewed Original ResearchConceptsOrthogonal translation systemHost interactionsNon-standard amino acidsPost-translational modificationsSystems-level biologyStress response activationTranslation systemSynthetic biological systemsCellular physiologyProtein phosphorylationOTS performanceHost physiologyCellular environmentAmino acidsCellular mechanismsDeleterious interactionsResponse activationBiological systemsPhysiologyOTS developmentUnparalleled accessPhosphorylationHost toxicityBiologyInteraction
2019
Distinct Hepatic PKA and CDK Signaling Pathways Control Activity-Independent Pyruvate Kinase Phosphorylation and Hepatic Glucose Production
Gassaway BM, Cardone RL, Padyana AK, Petersen MC, Judd ET, Hayes S, Tong S, Barber KW, Apostolidi M, Abulizi A, Sheetz JB, Kshitiz, Aerni HR, Gross S, Kung C, Samuel VT, Shulman GI, Kibbey RG, Rinehart J. Distinct Hepatic PKA and CDK Signaling Pathways Control Activity-Independent Pyruvate Kinase Phosphorylation and Hepatic Glucose Production. Cell Reports 2019, 29: 3394-3404.e9. PMID: 31825824, PMCID: PMC6951436, DOI: 10.1016/j.celrep.2019.11.009.Peer-Reviewed Original ResearchConceptsCyclin-dependent kinasesMetabolic control pointPhosphorylation sitesNuclear retentionCDK activityPKL activityDays high-fat dietKinase phosphorylationImportant enzymePyruvate kinaseHigh-fat dietS113KinaseEnzyme kineticsPhosphorylationAdditional control pointsRegulationGlucose productionHepatic glucose productionInsulin resistanceGlycolysisEnzymePKAPathwayActivity
2015
The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy
Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW. The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Molecular Cell 2015, 60: 7-20. PMID: 26365381, PMCID: PMC4592482, DOI: 10.1016/j.molcel.2015.08.016.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingCell Cycle ProteinsHeLa CellsHumansMembrane Transport ProteinsMitochondriaMitophagyNuclear ProteinsPhosphorylationProtein KinasesProtein Serine-Threonine KinasesProteomicsSequestosome-1 ProteinTranscription Factor TFIIIAUbiquitinationUbiquitin-Protein LigasesConceptsUbiquitin chainsEfficient mitophagyTBK1 activationPINK1-Parkin pathwayUbiquitylation pathwayAdaptor recruitmentCellular homeostasisMitochondrial retentionTBK1 kinaseDamaged mitochondriaChain bindingMitophagyHeLa cellsMitochondriaPhosphorylationNDP52Positive feedback mechanismPathwayOPTNRecruitmentActivationAmyotrophic lateral sclerosisAssemblyS473KinaseRobust production of recombinant phosphoproteins using cell-free protein synthesis
Oza JP, Aerni HR, Pirman NL, Barber KW, ter Haar CM, Rogulina S, Amrofell MB, Isaacs FJ, Rinehart J, Jewett MC. Robust production of recombinant phosphoproteins using cell-free protein synthesis. Nature Communications 2015, 6: 8168. PMID: 26350765, PMCID: PMC4566161, DOI: 10.1038/ncomms9168.Peer-Reviewed Original ResearchConceptsMEK1 activityMultiple phosphorylated residuesCo-translational incorporationSite-specific protein phosphorylationCell-free protein synthesis platformHigh-throughput technology platformsCell-free protein synthesisSite-specific phosphorylationStructure-function relationshipsRecombinant phosphoproteinsPhosphorylation eventsMEK1 kinasePhosphorylated residuesProtein phosphorylationProtein synthesisEscherichia coliPhosphoproteinRobust productionSynthesis platformStructural consequencesDirect expressionPhosphorylationTechnology platformKinasePhosphoserine
2013
Mineralocorticoid Receptor Phosphorylation Regulates Ligand Binding and Renal Response to Volume Depletion and Hyperkalemia
Shibata S, Rinehart J, Zhang J, Moeckel G, Castañeda-Bueno M, Stiegler AL, Boggon TJ, Gamba G, Lifton RP. Mineralocorticoid Receptor Phosphorylation Regulates Ligand Binding and Renal Response to Volume Depletion and Hyperkalemia. Cell Metabolism 2013, 18: 660-671. PMID: 24206662, PMCID: PMC3909709, DOI: 10.1016/j.cmet.2013.10.005.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAngiotensin IIAnimalsChlorocebus aethiopsCOS CellsCytoplasmElectrolytesHumansHyperkalemiaKidneyLigandsMiceMolecular Sequence DataPhosphoprotein PhosphatasesPhosphorylationPhosphoserinePotassium, DietaryProtein Serine-Threonine KinasesProtein TransportRatsReceptors, MineralocorticoidSignal TransductionTranscriptional ActivationConceptsVolume depletionMineralocorticoid receptorAldosterone-dependent increaseHormone receptor activityNuclear hormone receptor activityMR activationRenal responseDistinct adaptive responsesAngiotensin IIDistal nephronCl reabsorptionHyperkalemiaMR ligand-binding domainReceptor activityApical proton pumpPlasma volumeReceptor bindingHomeostatic responseNuclear receptorsReceptor phosphorylation
2009
Sites of Regulated Phosphorylation that Control K-Cl Cotransporter Activity
Rinehart J, Maksimova YD, Tanis JE, Stone KL, Hodson CA, Zhang J, Risinger M, Pan W, Wu D, Colangelo CM, Forbush B, Joiner CH, Gulcicek EE, Gallagher PG, Lifton RP. Sites of Regulated Phosphorylation that Control K-Cl Cotransporter Activity. Cell 2009, 138: 525-536. PMID: 19665974, PMCID: PMC2811214, DOI: 10.1016/j.cell.2009.05.031.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acid SubstitutionAnimalsHumansMiceMolecular Sequence DataPhosphorylationSequence AlignmentSymportersConceptsIntrinsic transport activityK-Cl cotransporterTransport activityCell volume regulationRegulated phosphorylationRNA interferenceAlanine substitutionsCultured cellsHomologous sitesKCC activityCl exitWNK1 expressionNeonatal mouse brainVolume regulationNeuronal functionHypotonic conditionsActive cotransportPhosphorylationIntracellular chloride concentrationCotransporter activityKCC3Human red blood cellsKCC2 activationFundamental roleMouse brain