2018
Two herpesviral noncoding PAN RNAs are functionally homologous but do not associate with common chromatin loci
Withers JB, Li ES, Vallery TK, Yario TA, Steitz JA. Two herpesviral noncoding PAN RNAs are functionally homologous but do not associate with common chromatin loci. PLOS Pathogens 2018, 14: e1007389. PMID: 30383841, PMCID: PMC6233925, DOI: 10.1371/journal.ppat.1007389.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCell NucleusChromatinGene Expression Regulation, ViralGene Knockdown TechniquesHEK293 CellsHerpesviridaeHerpesviridae InfectionsHerpesvirus 8, HumanHost-Pathogen InteractionsHumansMacaca mulattaRhadinovirusRNA, Long NoncodingRNA, MessengerRNA, NuclearRNA, ViralTumor Virus InfectionsViral ProteinsVirus ReplicationConceptsKaposi's sarcoma-associated herpesvirusPAN RNAPAN RNA expressionGene expressionChromatin lociSarcoma-associated herpesvirusViral mRNAsSpecific chromatin lociNuclear mRNA exportNucleotide sequence conservationAbundant nuclear RNARNA expressionLytic viral gene expressionViral gene expressionMRNA exportRNA associationSequence conservationPolyadenylated transcriptsViral chromatinLoci differHost chromatinRNA functionCell fractionationNuclear RNAProgeny virion releaseKaposi's Sarcoma-Associated Herpesvirus mRNA Accumulation in Nuclear Foci Is Influenced by Viral DNA Replication and Viral Noncoding Polyadenylated Nuclear RNA
Vallery TK, Withers JB, Andoh JA, Steitz JA. Kaposi's Sarcoma-Associated Herpesvirus mRNA Accumulation in Nuclear Foci Is Influenced by Viral DNA Replication and Viral Noncoding Polyadenylated Nuclear RNA. Journal Of Virology 2018, 92: 10.1128/jvi.00220-18. PMID: 29643239, PMCID: PMC6002709, DOI: 10.1128/jvi.00220-18.Peer-Reviewed Original ResearchConceptsKaposi's sarcoma-associated herpesvirusViral replication compartmentsSarcoma-associated herpesvirusReplication compartmentsViral DNA replicationViral DNA synthesisPAN RNANuclear fociDNA replicationNuclear RNAViral mRNAsDNA synthesisViral transcriptsLytic phaseIntronless viral mRNAsHijack host machineryActive viral DNA replicationPolyadenylated Nuclear RNAHost cell nucleusViral noncoding RNAViral RNA accumulationShutoff effectHuman cell hostSpatiotemporal regulationViral life cycle
2016
Host miRNA degradation by Herpesvirus saimiri small nuclear RNA requires an unstructured interacting region
Pawlica P, Moss WN, Steitz JA. Host miRNA degradation by Herpesvirus saimiri small nuclear RNA requires an unstructured interacting region. RNA 2016, 22: 1181-1189. PMID: 27335146, PMCID: PMC4931111, DOI: 10.1261/rna.054817.115.Peer-Reviewed Original ResearchConceptsSmall nuclear RNAMiR-27Nuclear RNAVivo secondary structureBioinformatic structural analysisBinding site sequenceMiRNA degradationU RNARNA functionMutagenic analysisHSUR1Interacting regionsSite sequenceHost microRNAsSecondary structureHerpesvirus saimiriT cell activationOncogenic herpesvirusRNAStructural flexibilityDecreased levelsMutantsStructural analysisDegradationMicroRNAs
2015
The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3′ ends
Xie M, Zhang W, Shu MD, Xu A, Lenis DA, DiMaio D, Steitz JA. The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3′ ends. Genes & Development 2015, 29: 1552-1564. PMID: 26220997, PMCID: PMC4526738, DOI: 10.1101/gad.266973.115.Peer-Reviewed Original ResearchConceptsEnd processing signalsSmall nuclear RNAProximity ligation assayEnd processingPre-miRNAsHerpesvirus saimiriPre-miRNA hairpinsRNA-protein interactionsSitu proximity ligation assayIntegrator complexMiRNA 3MiRNA biogenesisSnRNA 3Primary miRNAMiRNA hairpinsIntegrator activityNuclear RNASequence downstreamOncogenic γ-herpesvirusesRescue experimentsLigation assayVivo knockdownComplex actsΓ-herpesvirusesHairpin
2012
Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs
Brown JA, Valenstein ML, Yario TA, Tycowski KT, Steitz JA. Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 19202-19207. PMID: 23129630, PMCID: PMC3511071, DOI: 10.1073/pnas.1217338109.Peer-Reviewed Original ResearchConceptsRich internal loopMetastasis-associated lung adenocarcinoma transcript 1Rich tractSarcoma-associated herpesvirusDuplex-triplex junctionsTriple helical structureCellular noncoding RNAsNuclear retention elementBase triplesInternal loopKaposi's sarcoma-associated herpesvirusU base triplesPAN RNATriple helixNoncoding RNAsNuclear RNAThermal denaturation profilesReporter RNALung adenocarcinoma transcript 1C nucleotidesC base pairsMolecular mechanismsUnpaired nucleotidesBase pairsRNATracking expression and subcellular localization of RNA and protein species using high-throughput single cell imaging flow cytometry
Borah S, Nichols LA, Hassman LM, Kedes DH, Steitz JA. Tracking expression and subcellular localization of RNA and protein species using high-throughput single cell imaging flow cytometry. RNA 2012, 18: 1573-1579. PMID: 22745225, PMCID: PMC3404377, DOI: 10.1261/rna.033126.112.Peer-Reviewed Original ResearchConceptsKaposi's sarcoma-associated herpesvirusSarcoma-associated herpesvirusSubcellular localizationProtein moleculesHigh-throughput approachPAN RNAProtein speciesNoncoding RNAsNuclear RNAProtein C1Imaging Flow CytometryFlow cytometryRNANuclear translocationHigh-throughput applicationsLytic phaseViral RNATranslocationExpressionLocalizationCellsHeterogeneous populationPABPC1CytometryMolecules
2011
A Viral Nuclear Noncoding RNA Binds Re-localized Poly(A) Binding Protein and Is Required for Late KSHV Gene Expression
Borah S, Darricarrère N, Darnell A, Myoung J, Steitz JA. A Viral Nuclear Noncoding RNA Binds Re-localized Poly(A) Binding Protein and Is Required for Late KSHV Gene Expression. PLOS Pathogens 2011, 7: e1002300. PMID: 22022268, PMCID: PMC3192849, DOI: 10.1371/journal.ppat.1002300.Peer-Reviewed Original ResearchConceptsPAN RNAKaposi's Sarcoma-Associated HerpesvirusNuclear noncoding RNANuclear noncoding RNAsShutoff effectLytic phaseKSHV gene expressionRepertoire of functionsTail of mRNATransient transfection experimentsConsequence of expressionLate viral proteinsNoncoding RNAsExonuclease proteinNuclear RNAProtein C1Translation efficiencyHost mRNAsMRNA stabilityGene expressionUnknown functionTransfection experimentsViral mRNAsPABPC1Binding protein
2010
Poly(A) Tail Recognition by a Viral RNA Element Through Assembly of a Triple Helix
Mitton-Fry RM, DeGregorio SJ, Wang J, Steitz TA, Steitz JA. Poly(A) Tail Recognition by a Viral RNA Element Through Assembly of a Triple Helix. Science 2010, 330: 1244-1247. PMID: 21109672, PMCID: PMC3074936, DOI: 10.1126/science.1195858.Peer-Reviewed Original ResearchConceptsSarcoma-associated herpesvirusBox H/ACA small nucleolar RNAsMajor-groove triple helixNuclear noncoding RNANuclear retention elementSmall nucleolar RNAsViral RNA elementsRich internal loopTriple helixKaposi's sarcoma-associated herpesvirusPAN RNADeadenylation assaysRNA decayRNA clampNucleolar RNAsNoncoding RNAsNuclear RNATail recognitionRNA elementsFunctional importanceAngstrom resolutionRich loopSecondary structureRNAEne core
2006
Identification of a Rapid Mammalian Deadenylation-Dependent Decay Pathway and Its Inhibition by a Viral RNA Element
Conrad NK, Mili S, Marshall EL, Shu MD, Steitz JA. Identification of a Rapid Mammalian Deadenylation-Dependent Decay Pathway and Its Inhibition by a Viral RNA Element. Molecular Cell 2006, 24: 943-953. PMID: 17189195, DOI: 10.1016/j.molcel.2006.10.029.Peer-Reviewed Original ResearchConceptsQuality control pathwaysViral RNA elementsPAN RNAPolyadenylated transcriptsMammalian cellsNuclear RNASuch transcriptsRNA elementsCellular RNAGene expressionNuclear accumulationNuclear extractsNaked RNARNADecay pathwaysTranscriptsDeadenylationDependent fashionPathwayDeadenylaseIntronsAccumulationMRNAHybridizationIntramolecular hybridization
2005
Small Nuclear RNAs Encoded by Herpesvirus saimiri Upregulate the Expression of Genes Linked to T Cell Activation in Virally Transformed T Cells
Cook HL, Lytle JR, Mischo HE, Li MJ, Rossi JJ, Silva DP, Desrosiers RC, Steitz JA. Small Nuclear RNAs Encoded by Herpesvirus saimiri Upregulate the Expression of Genes Linked to T Cell Activation in Virally Transformed T Cells. Current Biology 2005, 15: 974-979. PMID: 15916956, DOI: 10.1016/j.cub.2005.04.034.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDAntigens, Differentiation, T-LymphocyteAntigens, NeoplasmBase PairingBlotting, NorthernBlotting, WesternCallithrixCD52 AntigenCell Line, TumorFlow CytometryGenetic VectorsGenome, ViralGlycoproteinsHerpesvirus 2, SaimiriineLentivirusLymphocyte ActivationMembrane ProteinsMicroarray AnalysisOncogene Proteins, ViralReceptors, Antigen, T-CellReceptors, ImmunologicRNA, Small NuclearT-LymphocytesTransduction, GeneticUp-RegulationConceptsSmall nuclear RNAHSURs 1Herpesvirus saimiriNuclear RNAExpression of genesAggressive T-cell leukemiaMarmoset T cellsHSUR 1U RNAAbundant viral transcriptCell activationT cellsHost mRNAsUnexpected roleIntracellular proteinsNorthern analysisSm classHost targetsViral transcriptsT cell activationNew World primatesRNAT-cell receptor betaT-cell leukemiaGamma chain
2004
The Herpesvirus saimiri Small Nuclear RNAs Recruit AU-Rich Element-Binding Proteins but Do Not Alter Host AU-Rich Element-Containing mRNA Levels in Virally Transformed T Cells
Cook HL, Mischo HE, Steitz JA. The Herpesvirus saimiri Small Nuclear RNAs Recruit AU-Rich Element-Binding Proteins but Do Not Alter Host AU-Rich Element-Containing mRNA Levels in Virally Transformed T Cells. Molecular And Cellular Biology 2004, 24: 4522-4533. PMID: 15121869, PMCID: PMC400482, DOI: 10.1128/mcb.24.10.4522-4533.2004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, SurfaceBase CompositionBase SequenceCallithrixCell LineCell Transformation, ViralELAV ProteinsELAV-Like Protein 1Herpesvirus 2, SaimiriineHeterogeneous-Nuclear Ribonucleoprotein DIn Vitro TechniquesMolecular Sequence DataMutationNucleic Acid ConformationProtein BindingRNA-Binding ProteinsRNA, MessengerRNA, Small NuclearRNA, ViralT-LymphocytesConceptsAU-rich elementsSmall nuclear RNAHSURs 1Herpesvirus saimiriNuclear RNAMRNA decay pathwayMarmoset T cellsHSUR 1HnRNP DPosttranscriptional regulationHost mRNAsHost proteinsMicroarray analysisUnknown functionProtein tristetraprolinVivo interactionDecay pathwaysHSURsMRNARNAMRNA levelsT cellsProteinCellsPathway
2003
Splicing double: insights from the second spliceosome
Patel AA, Steitz JA. Splicing double: insights from the second spliceosome. Nature Reviews Molecular Cell Biology 2003, 4: 960-970. PMID: 14685174, DOI: 10.1038/nrm1259.Peer-Reviewed Original ResearchConceptsMinor class intronsPhylogenetic analysisU12-type intronsMost multicellular organismsSmall nuclear RNASmall nuclear ribonucleoproteinParticular functional classNon-homologous positionsMessenger RNA interactionsMost metazoan taxaParalogous genesMulticellular organismsSpliceosomal factorsHomologous genesEvolutionary historyMetazoan taxaU5 snRNPSplicing machineryAcceptor splice siteAlternative splicingRNA interactionsU6 snRNPsNuclear RNANuclear ribonucleoproteinSplicing reaction
1997
AU-rich elements target small nuclear RNAs as well as mRNAs for rapid degradation
Fan X, Myer V, Steitz J. AU-rich elements target small nuclear RNAs as well as mRNAs for rapid degradation. Genes & Development 1997, 11: 2557-2568. PMID: 9334320, PMCID: PMC316563, DOI: 10.1101/gad.11.19.2557.Peer-Reviewed Original ResearchMeSH KeywordsAntigens, SurfaceBase SequenceELAV ProteinsELAV-Like Protein 1Gene Expression RegulationGenes, ReporterGlobinsHerpesvirus 2, SaimiriineMolecular Sequence DataMutationRepetitive Sequences, Nucleic AcidRibonucleasesRNA, MessengerRNA, Small NuclearRNA, ViralRNA-Binding ProteinsTranscription, GeneticTransfectionConceptsAU-rich elementsMRNA degradation machinerySmall nuclear RNAHSUR 1Host RNA moleculesDegradation machineryMammalian mRNAsNuclear RNARNA moleculesMutational analysisSequence requirementsTarget RNAHuR proteinOngoing translationRNA 1MRNARapid degradationRNASimilar mechanismDegradation activityDeadenylationSnRNAMachineryProteinDegradation
1996
Length suppression in histone messenger RNA 3′-end maturation: Processing defects of insertion mutant premessenger RNAs can be compensated by insertions into the U7 small nuclear RNA
Scharl E, Steitz J. Length suppression in histone messenger RNA 3′-end maturation: Processing defects of insertion mutant premessenger RNAs can be compensated by insertions into the U7 small nuclear RNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 14659-14664. PMID: 8962110, PMCID: PMC26191, DOI: 10.1073/pnas.93.25.14659.Peer-Reviewed Original ResearchConceptsHistone downstream elementU7 RNAHistone messenger RNASmall nuclear RNARNA processing systemSmall ribonucleoproteinPremessenger RNANuclear RNAPre-mRNAU7 small nuclear RNADownstream elementsCleavage siteRNAMessenger RNAXenopus oocytesBase pairingProcessing defectsU7First demonstrationHistonesRNAsRibonucleoproteinInsertionMRNASitesMore Sm snRNAs from Vertebrate Cells
Yu Y, Tarn W, Yario T, Steitz J. More Sm snRNAs from Vertebrate Cells. Experimental Cell Research 1996, 229: 276-281. PMID: 8986610, DOI: 10.1006/excr.1996.0372.Peer-Reviewed Original Research
1995
ENHANCED PERSPECTIVE: Small RNA Chaperones for Ribosome Biogenesis
Steitz J, Tycowski K. ENHANCED PERSPECTIVE: Small RNA Chaperones for Ribosome Biogenesis. Science 1995, 270: 1626-1626. PMID: 7502072, DOI: 10.1126/science.270.5242.1626.Peer-Reviewed Original Research
1993
The U5 and U6 Small Nuclear RNAs as Active Site Components of the Spliceosome
Sontheimer E, Steitz J. The U5 and U6 Small Nuclear RNAs as Active Site Components of the Spliceosome. Science 1993, 262: 1989-1996. PMID: 8266094, DOI: 10.1126/science.8266094.Peer-Reviewed Original ResearchConceptsSmall nuclear RNANuclear RNAPrecursor messenger RNA splicingLariat intermediateU6 small nuclear RNAMessenger RNA splicingExon 1Self-splicing intronsActive site componentsRNA splicingMammalian spliceosomeU6 RNARNA contactsMechanistic parallelsPre-mRNAVitro splicingSubsequent splicingSplicingSpliceosomeSplice siteLast residueFirst residueFunctional interactionIntron productsRNAA base-pairing interaction between U2 and U6 small nuclear RNAs occurs in > 150S complexes in HeLa cell extracts: implications for the spliceosome assembly pathway.
Wassarman DA, Steitz JA. A base-pairing interaction between U2 and U6 small nuclear RNAs occurs in > 150S complexes in HeLa cell extracts: implications for the spliceosome assembly pathway. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 7139-7143. PMID: 8346227, PMCID: PMC47091, DOI: 10.1073/pnas.90.15.7139.Peer-Reviewed Original ResearchConceptsU6 small nuclear RNASmall nuclear RNAS100 extractsNuclear RNASer/Arg-rich (SR) proteinsBase pairingNuclear extractsLarge complexesArg-rich proteinsPre-RNA splicingSpliceosome assembly pathwayHeLa cell extractsHeLa nuclear extractsBase-pairing interactionsBase pair formsPossible functional relationshipRibonucleoprotein complexesSpliceosome complexMammalian cellsAssembly pathwaySplicing substratePsoralen crosslinkingGlycerol gradientsCell extractsSplicingRare scleroderma autoantibodies to the U11 small nuclear ribonucleoprotein and to the trimethylguanosine cap of U small nuclear RNAs.
Gilliam AC, Steitz JA. Rare scleroderma autoantibodies to the U11 small nuclear ribonucleoprotein and to the trimethylguanosine cap of U small nuclear RNAs. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 6781-6785. PMID: 8341699, PMCID: PMC47016, DOI: 10.1073/pnas.90.14.6781.Peer-Reviewed Original ResearchConceptsSmall nuclear ribonucleoprotein particleTrimethylguanosine capLow-abundance membersSmall nuclear RNASmall nuclear ribonucleoproteinNuclear ribonucleoprotein particleGlycerol gradient fractionsU RNAU11 small nuclear ribonucleoproteinsSnRNP complexTargeted degradationNuclear RNANuclear ribonucleoproteinRibonucleoprotein particleNuclear extractsSm classProtein componentsHeLa cellsRNPGradient fractionsRNAProteinScleroderma seraRibonucleoproteinCosediments
1992
Interactions of Small Nuclear RNA's with Precursor Messenger RNA During in Vitro Splicing
Wassarman D, Steitz J. Interactions of Small Nuclear RNA's with Precursor Messenger RNA During in Vitro Splicing. Science 1992, 257: 1918-1925. PMID: 1411506, DOI: 10.1126/science.1411506.Peer-Reviewed Original ResearchConceptsPrecursor messenger RNASmall nuclear RNANuclear RNASplice siteMessenger RNAPrecursor messenger RNA splicingU6 small nuclear RNAMessenger RNA splicingHeLa nuclear extractsExcised lariat intronSmall RNAsRNA splicingLariat intronIntron sequencesVitro splicingNuclear extractsCleavage eventsSplicingRNAU5Branch siteFirst cleavage eventU6U2U1