2011
Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA–protein complexes (microRNPs)
Mortensen RD, Serra M, Steitz JA, Vasudevan S. Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA–protein complexes (microRNPs). Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 8281-8286. PMID: 21536868, PMCID: PMC3100953, DOI: 10.1073/pnas.1105401108.Peer-Reviewed Original ResearchConceptsMicroRNA–protein complexesProtein kinase AIIXenopus laevis oocytesImmature Xenopus laevis oocytesGene expression activationMammalian cell linesLaevis oocytesHuman Ago2Target reporterMammalian cellsExpression activationMyt1 kinaseGene expressionPosttranscriptional activationRegulated expressionSpecific mRNAsPhysiological relevanceQuiescent cellsMicroRNAsOocyte stateCell linesOocytesReporterCAMP levelsExpression
2009
miRNPs: versatile regulators of gene expression in vertebrate cells1
Steitz JA, Vasudevan S. miRNPs: versatile regulators of gene expression in vertebrate cells1. Biochemical Society Transactions 2009, 37: 931-935. PMID: 19754429, DOI: 10.1042/bst0370931.Peer-Reviewed Original ResearchConceptsPost-transcriptional controlAssociation of Ago2Role of miRNAsImmature Xenopus oocytesTNFalpha AREProtein FXR1Contact-inhibited cellsTranslational regulationTranslation activationVersatile regulatorsTranslational efficiencyNegative regulatorGene expressionSpecific miRNACell cycleEffector moleculesCell growthXenopus oocytesAgo2FXR1
2008
Where in the cell is the minor spliceosome?
Steitz JA, Dreyfuss G, Krainer AR, Lamond AI, Matera AG, Padgett RA. Where in the cell is the minor spliceosome? Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 8485-8486. PMID: 18562285, PMCID: PMC2438384, DOI: 10.1073/pnas.0804024105.Peer-Reviewed Original ResearchCell cycle control of microRNA-mediated translation regulation
Vasudevan S, Tong Y, Steitz JA. Cell cycle control of microRNA-mediated translation regulation. Cell Cycle 2008, 7: 1545-1549. PMID: 18469529, PMCID: PMC2556257, DOI: 10.4161/cc.7.11.6018.Peer-Reviewed Original Research
2007
Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation
Vasudevan S, Tong Y, Steitz JA. Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science 2007, 318: 1931-1934. PMID: 18048652, DOI: 10.1126/science.1149460.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsArgonaute ProteinsBase PairingCell CycleCell LineCell ProliferationComputational BiologyEukaryotic Initiation Factor-2Gene Expression RegulationHeLa CellsHMGA2 ProteinHumansInterphaseMicroRNAsProtein BiosynthesisRibonucleoproteinsRNA-Binding ProteinsRNA, MessengerTransfectionTumor Necrosis Factor-alphaUp-RegulationConceptsAU-rich elementsCell cycle arrestCycle arrestUntranslated regionMental retardation-related protein 1MicroRNA target sitesMicroRNA let-7Messenger RNA (mRNA) 3' untranslated regionsRegulates TranslationTranslation regulationTarget mRNAsGene expressionCell cycleCommon functionProtein 1ArgonauteTarget siteActivation signalsRepressionTumor necrosis factor-alpha mRNAMRNARegulationActivationArrestMicroRNPsTarget mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR
Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 9667-9672. PMID: 17535905, PMCID: PMC1887587, DOI: 10.1073/pnas.0703820104.Peer-Reviewed Original ResearchConceptsInternal ribosome entry siteTarget mRNAsMiRNA-mediated repressionRepression of translationLuciferase reporter mRNAMiRNA target sitesInitiation of translationMiRNA-binding sitesHuman HeLa cellsRibosome entry siteMicroRNA-binding sitesLet-7 complementary sitesHuman Ago2Reporter mRNAMicroRNAs (miRNAs) bindEndogenous mRNATranslational efficiencyLet-7a miRNAUTRProtein synthesisDNA transfectionComplementary sitesHeLa cellsEntry siteTarget siteAU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2
Vasudevan S, Steitz JA. AU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2. Cell 2007, 128: 1105-1118. PMID: 17382880, PMCID: PMC3430382, DOI: 10.1016/j.cell.2007.01.038.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsArgonaute ProteinsCell CycleCell LineChromatography, AffinityCulture Media, Serum-FreeEukaryotic Initiation Factor-2Genes, ReporterHumansLuciferases, FireflyMonocytesPeptide Initiation FactorsPolyribosomesProtein BiosynthesisRegulatory Sequences, Ribonucleic AcidRibonucleoproteinsRNA-Binding ProteinsSerumTumor Necrosis Factor-alphaUp-RegulationConceptsAU-rich elementsArgonaute 2Posttranscriptional regulatory systemsAffinity purification methodShRNA knockdown experimentsCell cycle arrestHuman cell linesTranslation activationRegulatory signalsMRNA stabilityGene expressionSerum starvationAU-RichFXR1Activation roleRegulatory systemProtein 1Cell linesMRNA levelsNew insightsDevelopmental consequencesTranslation conditionsUpregulationDirect evidencePurification method
2006
Metazoan oocyte and early embryo development program: a progression through translation regulatory cascades
Vasudevan S, Seli E, Steitz JA. Metazoan oocyte and early embryo development program: a progression through translation regulatory cascades. Genes & Development 2006, 20: 138-146. PMID: 16418480, DOI: 10.1101/gad.1398906.Peer-Reviewed Original ResearchAnimalsCarrier ProteinsCell Cycle ProteinsCytoplasmFemaleGene Expression Regulation, DevelopmentalHumansMaleModels, GeneticMRNA Cleavage and Polyadenylation FactorsOocytesPoly(A)-Binding ProteinsPolyadenylationProtein BiosynthesisRNA-Binding ProteinsRNA, Messenger, StoredTranscription FactorsXenopus laevisXenopus Proteins
2005
SRprises along a Messenger’s Journey
Huang Y, Steitz JA. SRprises along a Messenger’s Journey. Molecular Cell 2005, 17: 613-615. PMID: 15749011, DOI: 10.1016/j.molcel.2005.02.020.Peer-Reviewed Original Research
1998
Classification of gas5 as a Multi-Small-Nucleolar-RNA (snoRNA) Host Gene and a Member of the 5′-Terminal Oligopyrimidine Gene Family Reveals Common Features of snoRNA Host Genes
Smith C, Steitz J. Classification of gas5 as a Multi-Small-Nucleolar-RNA (snoRNA) Host Gene and a Member of the 5′-Terminal Oligopyrimidine Gene Family Reveals Common Features of snoRNA Host Genes. Molecular And Cellular Biology 1998, 18: 6897-6909. PMID: 9819378, PMCID: PMC109273, DOI: 10.1128/mcb.18.12.6897.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAnimalsBase SequenceCell DivisionCell NucleolusCloning, MolecularHumansMembrane ProteinsMiceMolecular Sequence DataMultigene FamilyProtein BiosynthesisRibonucleoproteinsRibosomesRNA SplicingRNA, AntisenseRNA, MessengerRNA, Small NuclearRNA, Small NucleolarTranscription, GeneticConceptsHost genesGene familyGAS5 geneBox C/D snoRNAsSnoRNA host genesHost gene transcriptsCell growthInhibition of translationSmall nucleolar RNA host geneSmall nucleolarD snoRNAsGAS5 transcriptsMRNP particlesSpecific transcriptsGene transcriptsGenesTranscriptsSnoRNAsRNASequenceIntronsCommon featureRibosomesRRNAFamily
1977
Characterization of two mRNA · rRNA complexes implicated in the initiation of protein biosynthesis
Steitz J, Steege D. Characterization of two mRNA · rRNA complexes implicated in the initiation of protein biosynthesis. Journal Of Molecular Biology 1977, 114: 545-558. PMID: 335077, DOI: 10.1016/0022-2836(77)90177-2.Peer-Reviewed Original ResearchConceptsProtein biosynthesisEscherichia coli 16 S ribosomal RNAS ribosomal RNABase pair regionNuclease digestion studiesFragment complexAssignment of residuesRibosomal RNARRNA complexLambda PRBacteriophage lambdaMolecular understandingInitiation siteInitiation eventsStrong experimental supportMessenger RNABiosynthesisThermal denaturation studiesDenaturation studiesRNAPR transcriptsPR regionDigestion studiesMRNAComplexes3′ Terminal sequences of 16S rRNA do not explain translational specificity differences between E. coli and B. stearothermophilus ribosomes
SPRAGUE KU, STEITZ JA, GRENLEY RM, STOCKING CE. 3′ Terminal sequences of 16S rRNA do not explain translational specificity differences between E. coli and B. stearothermophilus ribosomes. Nature 1977, 267: 462-465. PMID: 327330, DOI: 10.1038/267462a0.Peer-Reviewed Original ResearchDifferential requirements for polypeptide chain initiation complex formation at the three bacteriophage R17 initiator regions
Steitz J, Wahba A, Laughrea M, Moore P. Differential requirements for polypeptide chain initiation complex formation at the three bacteriophage R17 initiator regions. Nucleic Acids Research 1977, 4: 1-16. PMID: 325516, PMCID: PMC342405, DOI: 10.1093/nar/4.1.1.Peer-Reviewed Original Research
1975
F factor-mediated inhibition of bacteriophage T7 growth: Analysis of T7 RNA and protein synthesis In vivo and In vitro using male and female Escherichia coli
Condit RC, Steitz JA. F factor-mediated inhibition of bacteriophage T7 growth: Analysis of T7 RNA and protein synthesis In vivo and In vitro using male and female Escherichia coli. Journal Of Molecular Biology 1975, 98: 31-43. PMID: 1104867, DOI: 10.1016/s0022-2836(75)80099-4.Peer-Reviewed Original ResearchConceptsT7 growthProtein synthesisE. coliPolyacrylamide gel electrophoresisEscherichia coliPhage protein synthesisGel electrophoresisTranslation apparatusT7 proteinsPhage proteinsT7 infectionT7 DNAT7 RNAFaithful synthesisRNA synthesisProteinMale cellsRNAColiTranscriptionSimultaneous inhibitionSpecific modificationsT7InhibitionElectrophoresis