2019
Quantitative Fluorescence In Situ Hybridization (FISH) and Immunofluorescence (IF) of Specific Gene Products in KSHV-Infected Cells.
Vallery TK, Steitz JA. Quantitative Fluorescence In Situ Hybridization (FISH) and Immunofluorescence (IF) of Specific Gene Products in KSHV-Infected Cells. Journal Of Visualized Experiments 2019 PMID: 31524859, PMCID: PMC6750728, DOI: 10.3791/59697.Peer-Reviewed Original ResearchConceptsRNA FISHSarcoma-associated herpesvirusSpecific RNAViral replication compartmentsSpecific gene productsSitu hybridizationKaposi's sarcoma-associated herpesvirusMultiple cell typesReplication compartmentsGene productsViral genesHost cellsCell typesQuantitative fluorescenceNuclear factoriesFishCell morphologyHuman hostMechanistic insightsSpatiotemporal activityUninfected cellsBehavior of biomoleculesRNAProteinCells
2018
Two herpesviral noncoding PAN RNAs are functionally homologous but do not associate with common chromatin loci
Withers JB, Li ES, Vallery TK, Yario TA, Steitz JA. Two herpesviral noncoding PAN RNAs are functionally homologous but do not associate with common chromatin loci. PLOS Pathogens 2018, 14: e1007389. PMID: 30383841, PMCID: PMC6233925, DOI: 10.1371/journal.ppat.1007389.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCell NucleusChromatinGene Expression Regulation, ViralGene Knockdown TechniquesHEK293 CellsHerpesviridaeHerpesviridae InfectionsHerpesvirus 8, HumanHost-Pathogen InteractionsHumansMacaca mulattaRhadinovirusRNA, Long NoncodingRNA, MessengerRNA, NuclearRNA, ViralTumor Virus InfectionsViral ProteinsVirus ReplicationConceptsKaposi's sarcoma-associated herpesvirusPAN RNAPAN RNA expressionGene expressionChromatin lociSarcoma-associated herpesvirusViral mRNAsSpecific chromatin lociNuclear mRNA exportNucleotide sequence conservationAbundant nuclear RNARNA expressionLytic viral gene expressionViral gene expressionMRNA exportRNA associationSequence conservationPolyadenylated transcriptsViral chromatinLoci differHost chromatinRNA functionCell fractionationNuclear RNAProgeny virion release
2017
An Exportin-1–dependent microRNA biogenesis pathway during human cell quiescence
Martinez I, Hayes KE, Barr JA, Harold AD, Xie M, Bukhari SIA, Vasudevan S, Steitz JA, DiMaio D. An Exportin-1–dependent microRNA biogenesis pathway during human cell quiescence. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: e4961-e4970. PMID: 28584122, PMCID: PMC5488920, DOI: 10.1073/pnas.1618732114.Peer-Reviewed Original ResearchConceptsBiogenesis pathwayExportin 1Exportin-5Canonical miRNA biogenesis pathwayCanonical miRNA biogenesisTrimethylguanosine synthase 1MicroRNA biogenesis pathwayMiRNA biogenesis pathwayMiRNA processing pathwayStem cell biologyCellular growth arrestGroup of miRNAsExpression of miRNAsPrimary human fibroblastsMiRNA biogenesisPrimary miRNAsCellular quiescenceTissue homeostasisCell biologyProliferative arrestSpecific miRNAsCell quiescenceGrowth arrestBiogenesisMiRNAs
2015
Widespread Inducible Transcription Downstream of Human Genes
Vilborg A, Passarelli MC, Yario TA, Tycowski KT, Steitz JA. Widespread Inducible Transcription Downstream of Human Genes. Molecular Cell 2015, 59: 449-461. PMID: 26190259, PMCID: PMC4530028, DOI: 10.1016/j.molcel.2015.06.016.Peer-Reviewed Original ResearchConceptsOsmotic stressLong non-coding regionsDownstream of genesProtein-coding genesNon-coding regionsPervasive transcriptionHuman cell linesTranscription downstreamHuman genomeHuman genesTranscript inductionRNA-seqPolyA signalUpstream transcriptsUndescribed mechanismGenesCell linesTranscriptionTranscript typeActive regulationTranscriptsDetailed mechanistic studiesRNADownstreamMechanistic studies
2013
Phosphorylation of DGCR8 Increases Its Intracellular Stability and Induces a Progrowth miRNA Profile
Herbert KM, Pimienta G, DeGregorio SJ, Alexandrov A, Steitz JA. Phosphorylation of DGCR8 Increases Its Intracellular Stability and Induces a Progrowth miRNA Profile. Cell Reports 2013, 5: 1070-1081. PMID: 24239349, PMCID: PMC3892995, DOI: 10.1016/j.celrep.2013.10.017.Peer-Reviewed Original ResearchConceptsMicroprocessor complexRNA-binding proteinRNase III enzymeInhibition of phosphatasesStem-loop structureERK/MAPKSpecific processing activityMiRNA expression profilesExtracellular cuesMiRNA biogenesisDrosha proteinPhosphorylation sitesPrimary miRNAMammalian cellsProtein stabilityExpression profilesDGCR8Intracellular stabilityHeLa cellsCellular levelMiRNA profilesPhosphorylationMRNA levelsProteinCells
2012
Association of Argonaute proteins and microRNAs can occur after cell lysis
Riley KJ, Yario TA, Steitz JA. Association of Argonaute proteins and microRNAs can occur after cell lysis. RNA 2012, 18: 1581-1585. PMID: 22836356, PMCID: PMC3425773, DOI: 10.1261/rna.034934.112.Peer-Reviewed Original ResearchConceptsHuman AgosMiRNA-protein complexesMicroRNA target identificationDirect mRNA targetsCore protein componentsArgonaute proteinsAGO proteinsMRNA targetsImmunoprecipitation experimentsProtein componentsMiRNA mimicsRNAEndogenous interactionCell lysisTarget identificationImmunopurification techniquesGlobal analysisProteinInteraction artifactsOrigin of interactionsExperimental approachArgonauteVivoAgoMiRNAsEBV and human microRNAs co‐target oncogenic and apoptotic viral and human genes during latency
Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB, Steitz JA. EBV and human microRNAs co‐target oncogenic and apoptotic viral and human genes during latency. The EMBO Journal 2012, 31: 2207-2221. PMID: 22473208, PMCID: PMC3343464, DOI: 10.1038/emboj.2012.63.Peer-Reviewed Original ResearchConceptsHuman microRNAsLatent membrane protein 1Viral miRNA functionHigh-throughput sequencingHuman miRNA targetsMiRNA-binding sitesMiRNA functionEBV BHRF1Human genesMiRNA targetsMRNA targetsCellular miRNAsMembrane protein 1MiRNA clusterHuman miRNAsGene expressionCell cycleReporter assaysDistinct binding sitesViral mRNAsMiRNAsLytic genesLytic switchProtein 1EBV latent membrane protein 1Tri-snRNP-associated proteins interact with subunits of the TRAMP and nuclear exosome complexes, linking RNA decay and pre-mRNA splicing
Nag A, Steitz JA. Tri-snRNP-associated proteins interact with subunits of the TRAMP and nuclear exosome complexes, linking RNA decay and pre-mRNA splicing. RNA Biology 2012, 9: 334-342. PMID: 22336707, PMCID: PMC3384585, DOI: 10.4161/rna.19431.Peer-Reviewed Original ResearchConceptsDecay machineryMRNA splicingRNA decay machineryRNA decay factorsTri-snRNP complexNuclear exosome complexPM/SclYeast counterpartIntergenic transcriptsSnoRNA biogenesisExosome complexTri-snRNPRNA decayRRNA processingPhosphorylation sitesMRNA processingPutative componentsMtr4Prp31MachinerySplicingDifferent pathwaysProteinSpliceosomeBiogenesis
2011
A Viral Nuclear Noncoding RNA Binds Re-localized Poly(A) Binding Protein and Is Required for Late KSHV Gene Expression
Borah S, Darricarrère N, Darnell A, Myoung J, Steitz JA. A Viral Nuclear Noncoding RNA Binds Re-localized Poly(A) Binding Protein and Is Required for Late KSHV Gene Expression. PLOS Pathogens 2011, 7: e1002300. PMID: 22022268, PMCID: PMC3192849, DOI: 10.1371/journal.ppat.1002300.Peer-Reviewed Original ResearchConceptsPAN RNAKaposi's Sarcoma-Associated HerpesvirusNuclear noncoding RNANuclear noncoding RNAsShutoff effectLytic phaseKSHV gene expressionRepertoire of functionsTail of mRNATransient transfection experimentsConsequence of expressionLate viral proteinsNoncoding RNAsExonuclease proteinNuclear RNAProtein C1Translation efficiencyHost mRNAsMRNA stabilityGene expressionUnknown functionTransfection experimentsViral mRNAsPABPC1Binding protein
2009
A Conserved WD40 Protein Binds the Cajal Body Localization Signal of scaRNP Particles
Tycowski KT, Shu MD, Kukoyi A, Steitz JA. A Conserved WD40 Protein Binds the Cajal Body Localization Signal of scaRNP Particles. Molecular Cell 2009, 34: 47-57. PMID: 19285445, PMCID: PMC2700737, DOI: 10.1016/j.molcel.2009.02.020.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAnimalsBase SequenceCell LineChromatography, AffinityCoiled BodiesDrosophila melanogasterDrosophila ProteinsHeLa CellsHumansMolecular Sequence DataNucleic Acid ConformationRecombinant Fusion ProteinsRegulatory Sequences, Ribonucleic AcidRibonucleoproteinsRNA-Binding ProteinsSequence AlignmentConceptsCAB boxCB localizationSmall Cajal bodyWD40 proteinsRNP functionCajal bodiesLocalization signalACA motifDomain RNATelomerase RNAHuman homologPosttranscriptional modificationsSmall nuclearWDR79ScaRNAsRNA elementsCentral playerUV crosslinkNuclear RNPCore proteinRNAProteinAdditional interactionsBindingLocalization
2008
Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′‐end maturation
Kolev NG, Yario TA, Benson E, Steitz JA. Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′‐end maturation. EMBO Reports 2008, 9: 1013-1018. PMID: 18688255, PMCID: PMC2572124, DOI: 10.1038/embor.2008.146.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceBase SequenceCell LineCleavage And Polyadenylation Specificity FactorConserved SequenceEndonucleasesEnzyme ActivationHeLa CellsHistonesHumansMolecular Sequence DataProtein Structure, TertiaryProtein SubunitsRNA 3' End ProcessingRNA PrecursorsRNA, MessengerConceptsPre-messenger RNAPolyadenylation specificity factorMammalian proteinsRNase ZConserved motifsHistone mRNASpecificity factorEndonucleolytic cleavageActive endonucleaseEndonuclease activityMBL familyComplex machineryMessenger RNAPoint mutationsCPSF73CPSF100Process of maturationMaturation processRNAProteinMotifMRNAMaturationEukaryotesCleavage
2007
Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation
Vasudevan S, Tong Y, Steitz JA. Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science 2007, 318: 1931-1934. PMID: 18048652, DOI: 10.1126/science.1149460.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsArgonaute ProteinsBase PairingCell CycleCell LineCell ProliferationComputational BiologyEukaryotic Initiation Factor-2Gene Expression RegulationHeLa CellsHMGA2 ProteinHumansInterphaseMicroRNAsProtein BiosynthesisRibonucleoproteinsRNA-Binding ProteinsRNA, MessengerTransfectionTumor Necrosis Factor-alphaUp-RegulationConceptsAU-rich elementsCell cycle arrestCycle arrestUntranslated regionMental retardation-related protein 1MicroRNA target sitesMicroRNA let-7Messenger RNA (mRNA) 3' untranslated regionsRegulates TranslationTranslation regulationTarget mRNAsGene expressionCell cycleCommon functionProtein 1ArgonauteTarget siteActivation signalsRepressionTumor necrosis factor-alpha mRNAMRNARegulationActivationArrestMicroRNPsAU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2
Vasudevan S, Steitz JA. AU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2. Cell 2007, 128: 1105-1118. PMID: 17382880, PMCID: PMC3430382, DOI: 10.1016/j.cell.2007.01.038.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsArgonaute ProteinsCell CycleCell LineChromatography, AffinityCulture Media, Serum-FreeEukaryotic Initiation Factor-2Genes, ReporterHumansLuciferases, FireflyMonocytesPeptide Initiation FactorsPolyribosomesProtein BiosynthesisRegulatory Sequences, Ribonucleic AcidRibonucleoproteinsRNA-Binding ProteinsSerumTumor Necrosis Factor-alphaUp-RegulationConceptsAU-rich elementsArgonaute 2Posttranscriptional regulatory systemsAffinity purification methodShRNA knockdown experimentsCell cycle arrestHuman cell linesTranslation activationRegulatory signalsMRNA stabilityGene expressionSerum starvationAU-RichFXR1Activation roleRegulatory systemProtein 1Cell linesMRNA levelsNew insightsDevelopmental consequencesTranslation conditionsUpregulationDirect evidencePurification method
2006
Epstein-Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling
Fok V, Friend K, Steitz JA. Epstein-Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling. Journal Of Cell Biology 2006, 173: 319-325. PMID: 16682524, PMCID: PMC2063832, DOI: 10.1083/jcb.200601026.Peer-Reviewed Original ResearchMeSH KeywordsActive Transport, Cell NucleusAnimalsAntibiotics, AntineoplasticAutoantigensCell LineCell Line, TumorCell NucleusDactinomycinFatty Acids, UnsaturatedFemaleHeLa CellsHerpesvirus 4, HumanHumansKaryopherinsMiceNIH 3T3 CellsOocytesProtein BindingRibonucleoproteinsRNA TransportRNA, UntranslatedRNA, ViralXenopus laevisMultiple domains of EBER 1, an Epstein-Barr virus noncoding RNA, recruit human ribosomal protein L22
Fok V, Mitton-Fry RM, Grech A, Steitz JA. Multiple domains of EBER 1, an Epstein-Barr virus noncoding RNA, recruit human ribosomal protein L22. RNA 2006, 12: 872-882. PMID: 16556938, PMCID: PMC1440895, DOI: 10.1261/rna.2339606.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesCarrier ProteinsCell LineCross-Linking ReagentsElectrophoretic Mobility Shift AssayHerpesvirus 4, HumanHumansIn Vitro TechniquesMaltose-Binding ProteinsNucleic Acid ConformationPlasmidsProtein BindingProtein Structure, TertiaryRecombinant Fusion ProteinsRibosomal ProteinsRNA-Binding ProteinsRNA, UntranslatedRNA, ViralSequence DeletionTranscription, GeneticTransfectionUltraviolet Rays
2004
Splicing of U12-type introns deposits an exon junction complex competent to induce nonsense-mediated mRNA decay
Hirose T, Shu MD, Steitz JA. Splicing of U12-type introns deposits an exon junction complex competent to induce nonsense-mediated mRNA decay. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 17976-17981. PMID: 15608055, PMCID: PMC539812, DOI: 10.1073/pnas.0408435102.Peer-Reviewed Original ResearchMeSH KeywordsCell LineCell NucleusCodon, NonsenseDNA, ComplementaryEvolution, MolecularExonsGene Expression RegulationHeLa CellsHumansImmunoprecipitationIntronsMutagenesis, Site-DirectedOpen Reading FramesPlasmidsRibonuclease HRibonucleoproteins, Small NuclearRNARNA PrecursorsRNA SplicingRNA, MessengerRNA, Small NuclearSpliceosomesTime FactorsTransfectionConceptsExon junction complexU12-type intronsOpen reading frameNonsense-mediated mRNA decayU12-type spliceosomeNonsense-mediated decaySmall nuclear ribonucleoproteinU2-type spliceosomePremature termination codonEJC assemblyMetazoan cellsMRNA decayEvolutionary ageDownstream functionsIntron removalNuclear ribonucleoproteinReading frameExon junctionsTermination codonJunction complexGene expressionIntron downstreamSpliceosomeIntronsSplicingEvidence for reassociation of RNA-binding proteins after cell lysis: Implications for the interpretation of immunoprecipitation analyses
Mili S, Steitz JA. Evidence for reassociation of RNA-binding proteins after cell lysis: Implications for the interpretation of immunoprecipitation analyses. RNA 2004, 10: 1692-1694. PMID: 15388877, PMCID: PMC1370654, DOI: 10.1261/rna.7151404.Peer-Reviewed Original ResearchThe Herpesvirus saimiri Small Nuclear RNAs Recruit AU-Rich Element-Binding Proteins but Do Not Alter Host AU-Rich Element-Containing mRNA Levels in Virally Transformed T Cells
Cook HL, Mischo HE, Steitz JA. The Herpesvirus saimiri Small Nuclear RNAs Recruit AU-Rich Element-Binding Proteins but Do Not Alter Host AU-Rich Element-Containing mRNA Levels in Virally Transformed T Cells. Molecular And Cellular Biology 2004, 24: 4522-4533. PMID: 15121869, PMCID: PMC400482, DOI: 10.1128/mcb.24.10.4522-4533.2004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, SurfaceBase CompositionBase SequenceCallithrixCell LineCell Transformation, ViralELAV ProteinsELAV-Like Protein 1Herpesvirus 2, SaimiriineHeterogeneous-Nuclear Ribonucleoprotein DIn Vitro TechniquesMolecular Sequence DataMutationNucleic Acid ConformationProtein BindingRNA-Binding ProteinsRNA, MessengerRNA, Small NuclearRNA, ViralT-LymphocytesConceptsAU-rich elementsSmall nuclear RNAHSURs 1Herpesvirus saimiriNuclear RNAMRNA decay pathwayMarmoset T cellsHSUR 1HnRNP DPosttranscriptional regulationHost mRNAsHost proteinsMicroarray analysisUnknown functionProtein tristetraprolinVivo interactionDecay pathwaysHSURsMRNARNAMRNA levelsT cellsProteinCellsPathway
2003
Splicing-Dependent and -Independent Modes of Assembly for Intron-Encoded Box C/D snoRNPs in Mammalian Cells
Hirose T, Shu MD, Steitz JA. Splicing-Dependent and -Independent Modes of Assembly for Intron-Encoded Box C/D snoRNPs in Mammalian Cells. Molecular Cell 2003, 12: 113-123. PMID: 12887897, DOI: 10.1016/s1097-2765(03)00267-3.Peer-Reviewed Original ResearchConceptsBox C/D snoRNAsSplice siteSnoRNP proteinsD snoRNAsSnoRNP assemblyMammalian cellsHost intronBox C/D snoRNPsSmall nucleolar RNAsD snoRNPsRRNA modificationNucleolar RNAsHost genesActive splicingNts upstreamIntronsEfficient expressionSnoRNAsStable stemSplicingVivo analysisProteinAssemblyBlockage experimentsStem
2001
Delineation of mRNA Export Pathways by the Use of Cell-Permeable Peptides
Gallouzi I, Steitz J. Delineation of mRNA Export Pathways by the Use of Cell-Permeable Peptides. Science 2001, 294: 1895-1901. PMID: 11729309, DOI: 10.1126/science.1064693.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntennapedia Homeodomain ProteinAntigens, SurfaceBiological TransportCell LineCell Membrane PermeabilityCell NucleusCytoplasmELAV ProteinsELAV-Like Protein 1Genes, fosHeat-Shock ResponseHomeodomain ProteinsHumansKaryopherinsMolecular Sequence DataNeuropeptidesNuclear ProteinsPeptide FragmentsPhosphoproteinsProtein BindingProtein Structure, TertiaryReceptors, Cytoplasmic and NuclearRegulatory Sequences, Nucleic AcidReproducibility of ResultsRNA StabilityRNA-Binding ProteinsRNA, MessengerTetrahydrofolate DehydrogenaseTranscription FactorsConceptsNuclear export signalAU-rich elementsMessenger RNAsAdapter proteinCell-permeable peptideLeucine-rich nuclear export signalReceptor proteinMRNA export pathwayNuclear pore complexExport receptor CRM1Overall cellular distributionSitu hybridization experimentsMRNA exportExport signalNucleocytoplasmic shuttlingPore complexExport pathwayHybridization experimentsProtein ligandsCellular distributionProtein