2024
UBXN3B is crucial for B lymphopoiesis
Geng T, Yang D, Lin T, Harrison A, Wang B, Cao Z, Torrance B, Fan Z, Wang K, Wang Y, Yang L, Haynes L, Cheng G, Vella A, Flavell R, Pereira J, Fikrig E, Wang P. UBXN3B is crucial for B lymphopoiesis. EBioMedicine 2024, 106: 105248. PMID: 39018756, PMCID: PMC11287013, DOI: 10.1016/j.ebiom.2024.105248.Peer-Reviewed Original ResearchUbiquitin regulatory XPre-BCR signalingB cell receptorB lymphopoiesisKnockout miceValosin-containing proteinCaspase-3 protein levelsCell cycle arrestBone marrow transferNormal B lymphopoiesisUbiquitin ligaseIncreased viral loadCell-intrinsic mannerPathogenesis of severe acute respiratory syndrome coronavirus 2RNA sequencingCycle arrestDNA virusesCell survivalMarrow transferMultiple virusesSingle-cellImmunofluorescence microscopyViral loadMature BRespiratory virusesNeutrophils insert elastase into hepatocytes to regulate calcium signaling in alcohol-associated hepatitis
Ogino N, Leite M, Guerra M, Kruglov E, Asashima H, Hafler D, Ito T, Pereira J, Peiffer B, Sun Z, Ehrlich B, Nathanson M. Neutrophils insert elastase into hepatocytes to regulate calcium signaling in alcohol-associated hepatitis. Journal Of Clinical Investigation 2024, 134: e171691. PMID: 38916955, PMCID: PMC11324315, DOI: 10.1172/jci171691.Peer-Reviewed Original ResearchAlcohol-associated hepatitisReduced cell proliferationCalcium channel expressionCalcium signaling mechanismsIntracellular calcium channelsCell proliferationRegulate calcium signalingNeutrophil extracellular trapsChannel expressionNeutrophil granule proteinsCalcium channelsNeutrophil infiltrationPatient specimensGranule proteasesMouse modelHealthy subjectsLiver diseaseExtracellular trapsCalcium signalingSerpin E2NeutrophilsElastase activityHepatitisTissue remodelingSignaling mechanismsA dual-acting DNASE1/DNASE1L3 biologic prevents autoimmunity and death in genetic and induced lupus models
Stabach P, Sims D, Gomez-Bañuelos E, Zehentmeier S, Dammen-Brower K, Bernhisel A, Kujawski S, Lopez S, Petri M, Goldman D, Lester E, Le Q, Ishaq T, Kim H, Srivastava S, Kumar D, Pereira J, Yarema K, Koumpouras F, Andrade F, Braddock D. A dual-acting DNASE1/DNASE1L3 biologic prevents autoimmunity and death in genetic and induced lupus models. JCI Insight 2024, 9: e177003. PMID: 38888971, PMCID: PMC11383374, DOI: 10.1172/jci.insight.177003.Peer-Reviewed Original ResearchSystemic lupus erythematosusDNASE1L3 deficiencySporadic systemic lupus erythematosusAssociated with systemic lupus erythematosusChromatin degradationDNA accumulationDevelopment of lupusPristane-induced lupusSelf-DNACell free DNAHuman isoformsSystemic lupus erythematosus plasmasDouble knockout miceDNASE1L3Pathogenic effectsFree DNALupus modelEnzymeInducible lupus modelAdult patientsLupus erythematosusKnockout micePediatric populationAutoimmune diseasesDNAInterleukin-7-based identification of liver lymphatic endothelial cells reveals their unique structural features
Yang Y, Jeong J, Su T, Lai S, Zhang P, Garcia-Milian R, Graham M, Liu X, McConnell M, Utsumi T, Pereira J, Iwakiri Y. Interleukin-7-based identification of liver lymphatic endothelial cells reveals their unique structural features. JHEP Reports 2024, 6: 101069. PMID: 38966234, PMCID: PMC11222939, DOI: 10.1016/j.jhepr.2024.101069.Peer-Reviewed Original ResearchCell surface structuresLymphatic endothelial cellsPublished single-cell RNA-sequencingRNA-seq analysisScRNA-seq analysisSingle-cell RNA sequencingLymphatic systemEndothelial cellsInterleukin-7RNA-seqScRNA-seqExpressed genesRNA sequencingTranscriptomic changesLow abundanceI/R liver injuryGenesIsolation protocolLiver cell typesCell typesIsolation methodLiver of miceHuman liver specimensHeterozygous miceMouse liver
2023
Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin beta receptor signaling
Feng X, Sun R, Lee M, Chen X, Guo S, Geng H, Müschen M, Choi J, Pereira J. Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin beta receptor signaling. ELife 2023, 12: e83533. PMID: 36912771, PMCID: PMC10042536, DOI: 10.7554/elife.83533.Peer-Reviewed Original ResearchConceptsMesenchymal stem cellsLymphotoxin beta receptorLeukemic cellsBeta receptorsLeukemic cell growthBone marrow microenvironmentStem cellsTransplant recipientsAML cellsMyeloblastic leukemiaMouse modelBone marrowLeukemia growthLymphotoxin α1β2Marrow microenvironmentPharmacological disruptionLymphopoiesisReceptorsHematopoietic outputMolecular mechanismsErythropoiesisDNA damage response pathwayCell growthCellsPhysiological mechanismsMature B cells and mesenchymal stem cells control emergency myelopoiesis
Lim V, Feng X, Miao R, Zehentmeier S, Ewing-Crystal N, Lee M, Tumanov A, Oh J, Iwasaki A, Wang A, Choi J, Pereira J. Mature B cells and mesenchymal stem cells control emergency myelopoiesis. Life Science Alliance 2023, 6: e202301924. PMID: 36717247, PMCID: PMC9889502, DOI: 10.26508/lsa.202301924.Peer-Reviewed Original ResearchConceptsMarrow mesenchymal stem cellsSystemic inflammationMature B cellsB cellsEmergency myelopoiesisMesenchymal stem cellsIL-1 receptorBone marrow mesenchymal stem cellsStem cellsMyeloid cell productionMonocyte numbersB lineage cellsCCL2 productionViral infectionLymphotoxin α1β2InflammationReduced survivalLymphopoietic activityMyelopoiesisLymphopoiesisImportant regulatorLTβRCell productionCellsGenetic blocking
2018
Cell circuits between B cell progenitors and IL-7+ mesenchymal progenitor cells control B cell development
Fistonich C, Zehentmeier S, Bednarski JJ, Miao R, Schjerven H, Sleckman BP, Pereira JP. Cell circuits between B cell progenitors and IL-7+ mesenchymal progenitor cells control B cell development. Journal Of Experimental Medicine 2018, 215: 2586-2599. PMID: 30158115, PMCID: PMC6170173, DOI: 10.1084/jem.20180778.Peer-Reviewed Original ResearchConceptsB cell progenitorsCell progenitorsUnrepaired double-strand DNA breaksDouble-strand DNA breaksB cell developmentMesenchymal progenitor cellsInterleukin-7IL-7R signalingFocal adhesion kinase expressionBone marrow stromal cellsCell movementMarrow stromal cellsDNA breaksPreB cellsCell developmentParacrine signalsCell behaviorAcute lymphoblastic leukemic cellsProgenitor cellsKinase expressionProgenitorsIL-7RCell exposureStromal cellsLow-adhesion state
2017
Chapter Two A Chemoattractant-Guided Walk Through Lymphopoiesis From Hematopoietic Stem Cells to Mature B Lymphocytes
Lim VY, Zehentmeier S, Fistonich C, Pereira JP. Chapter Two A Chemoattractant-Guided Walk Through Lymphopoiesis From Hematopoietic Stem Cells to Mature B Lymphocytes. Advances In Immunology 2017, 134: 47-88. PMID: 28413023, PMCID: PMC5784265, DOI: 10.1016/bs.ai.2017.02.001.Peer-Reviewed Original ResearchConceptsHematopoietic stem cellsBone marrow parenchymaProgenitor cellsCell motility machinerySpecialized bone marrow nichesMarrow parenchymaStem cellsMultipotent progenitor cellsCommon lymphoid progenitor cellsStem/progenitor cellsBone marrow nicheBone marrow sinusoidsMotility machineryMature B cell poolStem cell factorLymphoid progenitor cellsEndothelial cellsMature B lymphocytesBCR signalingInterleukin-7Multilineage differentiationMarrow nicheHematopoietic cellsCell factorMarrow sinusoids
2016
Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation
Gomes A, Hara T, Lim VY, Herndler-Brandstetter D, Nevius E, Sugiyama T, Tani-ichi S, Schlenner S, Richie E, Rodewald HR, Flavell RA, Nagasawa T, Ikuta K, Pereira JP. Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity 2016, 45: 1219-1231. PMID: 27913094, PMCID: PMC5538583, DOI: 10.1016/j.immuni.2016.11.004.Peer-Reviewed Original ResearchConceptsCommon lymphoid progenitorsHematopoietic stem cellsMesenchymal progenitorsProgenitor differentiationHSC nicheCell lineage decisionsBone marrow nicheHSC maintenanceLineage decisionsDifferentiation signalsCytokines SCFEndothelial cellsSeparate nichesLymphoid progenitorsMultilineage differentiationMarrow nicheNicheChemokine receptor CXCR4Conditional deletionIL-7 receptorStem cellsProgenitorsDifferentiationIL-7DeletionChapter 3 Trafficking of Osteoclast Precursors
Kikuta J, Nevius E, Ishii M, Pereira J. Chapter 3 Trafficking of Osteoclast Precursors. 2016, 25-40. DOI: 10.1016/b978-0-12-800571-2.00003-7.Peer-Reviewed Original Research
2015
Inflammatory Cell Migration in Rheumatoid Arthritis: A Comprehensive Review
Nevius E, Gomes AC, Pereira JP. Inflammatory Cell Migration in Rheumatoid Arthritis: A Comprehensive Review. Clinical Reviews In Allergy & Immunology 2015, 51: 59-78. PMID: 26511861, PMCID: PMC5785098, DOI: 10.1007/s12016-015-8520-9.Peer-Reviewed Original ResearchConceptsRheumatoid arthritisOsteoclast differentiationInflammatory cytokinesT lymphocytesOsteoclast precursorsChronic inflammatory autoimmune diseaseMultiple myeloid cellsInflammatory autoimmune diseaseChronic inflammatory diseaseInflammatory cellular infiltrationAdaptive immune responsesKey inflammatory cytokinesInflammatory cell migrationBone-resorbing osteoclastsIL-17Bone erosionAutoimmune diseasesAntibody responseBone resorptionInflammatory diseasesInnate signalsIL-1Immune responseArticular sitesCellular infiltrationOxysterols and EBI2 promote osteoclast precursor migration to bone surfaces and regulate bone mass homeostasis
Nevius E, Pinho F, Dhodapkar M, Jin H, Nadrah K, Horowitz M, Kikuta J, Ishii M, Pereira J. Oxysterols and EBI2 promote osteoclast precursor migration to bone surfaces and regulate bone mass homeostasis. Journal Of Cell Biology 2015, 211: 2111oia228. DOI: 10.1083/jcb.2111oia228.Peer-Reviewed Original ResearchOxysterols and EBI2 promote osteoclast precursor migration to bone surfaces and regulate bone mass homeostasis
Nevius E, Pinho F, Dhodapkar M, Jin H, Nadrah K, Horowitz MC, Kikuta J, Ishii M, Pereira JP. Oxysterols and EBI2 promote osteoclast precursor migration to bone surfaces and regulate bone mass homeostasis. Journal Of Experimental Medicine 2015, 212: 1931-1946. PMID: 26438360, PMCID: PMC4612084, DOI: 10.1084/jem.20150088.Peer-Reviewed Original ResearchConceptsOC precursorsBone surfaceEstrogen deficiency-induced osteoporosisBone mass homeostasisCell-cell interactionsTime-lapse microscopyBone metastatic cancerSignificant therapeutic potentialOxysterol ligandsFemale miceMale miceBone massMetastatic cancerLarge osteoclastsEBI2Nonhematopoietic cellsNovel pathwayTherapeutic potentialOsteoclastsTwo-photon microscopyMiceOsteoblastsVivoCellsOsteoporosisImmature B Cell Egress from Bone Marrow Is SOCS3 Independent
Nadrah K, Beck TC, Pereira JP. Immature B Cell Egress from Bone Marrow Is SOCS3 Independent. PLOS ONE 2015, 10: e0136061. PMID: 26274929, PMCID: PMC4537204, DOI: 10.1371/journal.pone.0136061.Peer-Reviewed Original ResearchConceptsB cell subsetsBone marrowBM parenchymaCell subsetsImmature-B cell egressB cell egressImmature B cell subsetsB cell distributionB lymphocyte subsetsCXCR4 desensitizationSuppressor of cytokineLymphocyte subsetsSOCS3 deficiencyPeripheral bloodSOCS3 deletionB lineage cellsB-lineage lymphocytesB cellsB cell developmentCXCR4Cell egressLigand exposureSOCS3Significant differencesHuman cell lines
2014
CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow
Beck T, Gomes A, Cyster J, Pereira J. CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. Journal Of Cell Biology 2014, 207: 2074oia214. DOI: 10.1083/jcb.2074oia214.Peer-Reviewed Original ResearchCXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow
Beck TC, Gomes AC, Cyster JG, Pereira JP. CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. Journal Of Experimental Medicine 2014, 211: 2567-2581. PMID: 25403444, PMCID: PMC4267240, DOI: 10.1084/jem.20140457.Peer-Reviewed Original ResearchConceptsGαi protein-coupled receptorsBone marrowCell egressImmature-B cell egressB cell egressTwo-photon intravital microscopyB cell retentionImmature B cellsBM parenchymaProtein-coupled receptorsNK cellsB lineage cellsImmature BLymphoid organsVCAM-1Pertussis toxinB cellsSinusoidal endotheliumIntravital microscopyCXCR4Lineage cellsHematopoietic cellsMarrowCellsMotilityDynamin 2–dependent endocytosis is required for sustained S1PR1 signaling
Willinger T, Ferguson S, Pereira J, De Camilli P, Flavell R. Dynamin 2–dependent endocytosis is required for sustained S1PR1 signaling. Journal Of Cell Biology 2014, 204: 2047oia57. DOI: 10.1083/jcb.2047oia57.Peer-Reviewed Original Research
2011
EBI2 Guides Serial Movements of Activated B Cells and Ligand Activity Is Detectable in Lymphoid and Nonlymphoid Tissues
Kelly LM, Pereira JP, Yi T, Xu Y, Cyster JG. EBI2 Guides Serial Movements of Activated B Cells and Ligand Activity Is Detectable in Lymphoid and Nonlymphoid Tissues. The Journal Of Immunology 2011, 187: 3026-3032. PMID: 21844396, PMCID: PMC3169736, DOI: 10.4049/jimmunol.1101262.Peer-Reviewed Original ResearchConceptsActivated B cellsB cellsAb responsesNonlymphoid tissuesCCR7-dependent mannerSecondary lymphoid organsDependent Ab responsesB cell migrationLigand activityCCR7 downregulationLymphoid organsFollicular regionsEBI2Outer follicleT zoneCD40 engagementCell linesLipid ligandsLymphoidCell migrationGene 2CellsTissueSerial movementsEarly waveOxysterols direct immune cell migration via EBI2
Hannedouche S, Zhang J, Yi T, Shen W, Nguyen D, Pereira JP, Guerini D, Baumgarten BU, Roggo S, Wen B, Knochenmuss R, Noël S, Gessier F, Kelly LM, Vanek M, Laurent S, Preuss I, Miault C, Christen I, Karuna R, Li W, Koo DI, Suply T, Schmedt C, Peters EC, Falchetto R, Katopodis A, Spanka C, Roy MO, Detheux M, Chen YA, Schultz PG, Cho CY, Seuwen K, Cyster JG, Sailer AW. Oxysterols direct immune cell migration via EBI2. Nature 2011, 475: 524-527. PMID: 21796212, PMCID: PMC4297623, DOI: 10.1038/nature10280.Peer-Reviewed Original Research
2010
Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses
Pereira JP, Kelly LM, Cyster JG. Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses. International Immunology 2010, 22: 413-419. PMID: 20508253, PMCID: PMC2877811, DOI: 10.1093/intimm/dxq047.Peer-Reviewed Original ResearchConceptsHumoral immune responseB cellsGerminal centersPlasma cellsImmune responseHigh-affinity plasma cellsHelper T cellsMemory B cellsDistinct stromal cellsB cell positioningB cell migrationSeparate subcompartmentDependent antibodyLymphoid tissueT cellsStromal cellsCell egressT zoneOrphan receptorChemokinesEarly phaseReceptorsCellsRecent studiesTissue