2000
Development and characterization of antibodies specific to caspase-3-produced alpha II-spectrin 120 kDa breakdown product: marker for neuronal apoptosis
Nath R, Huggins M, Glantz S, Morrow J, McGinnis K, Nadimpalli R, Wang K. Development and characterization of antibodies specific to caspase-3-produced alpha II-spectrin 120 kDa breakdown product: marker for neuronal apoptosis. Neurochemistry International 2000, 37: 351-361. PMID: 10825575, DOI: 10.1016/s0197-0186(00)00040-1.Peer-Reviewed Original ResearchConceptsWestern blotRat cerebellar granule neuronsHuman neuroblastoma SH-SY5Y cellsNeuroblastoma SH-SY5Y cellsSpectrin breakdown productsCerebellar granule neuronsSH-SY5Y cellsApoptotic neuronsCharacterization of antibodiesNeuronal apoptosisNeurodegenerative conditionsGranule neuronsBreakdown productsImmunocytochemical studySH-SY5YII-spectrinWithdrawal-induced apoptosisAntibodiesNeuronsCaspase-3Apoptotic deathPowerful markerChicken antibodiesApoptosisAlpha-spectrin
1999
Transforming Growth Factor β Induces Caspase 3-independent Cleavage of αII-Spectrin (α-Fodrin) Coincident with Apoptosis*
Brown T, Patil S, Cianci C, Morrow J, Howe P. Transforming Growth Factor β Induces Caspase 3-independent Cleavage of αII-Spectrin (α-Fodrin) Coincident with Apoptosis*. Journal Of Biological Chemistry 1999, 274: 23256-23262. PMID: 10438500, DOI: 10.1074/jbc.274.33.23256.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCarrier ProteinsCaspase 3CaspasesCell LineHydrolysisMiceMicrofilament ProteinsTransforming Growth Factor betaConceptsAlphaII-spectrinBroad-spectrum caspase inhibitorDistinct apoptotic pathwaysImmature B cell linesOnset of apoptosisCaspase-3 activationInduction of apoptosisPotent growth inhibitorNovel caspaseCaspase inhibitorsWEHI-231Cytoskeletal actinApoptotic pathwayB cell linesNovel substrateCell deathGrowth factor betaFirst direct evidenceCaspase-3ApoptosisCell linesCaspasesGrowth inhibitorFactor betaFirst evidence
1995
Autoantibodies specific for villin found in patients with colon cancer and other colitides
Rimm D, Holland T, Morrow J, Anderson J. Autoantibodies specific for villin found in patients with colon cancer and other colitides. Digestive Diseases And Sciences 1995, 40: 389-395. PMID: 7851204, DOI: 10.1007/bf02065426.Peer-Reviewed Original ResearchConceptsColon cancerActive autoimmune responseSpecific gastrointestinal diseasesLevels of autoantibodiesColon cancer patients´ seraCancer patient seraIntestinal epithelial cellsCryptic antigensAutoimmune responseGastrointestinal pathologyColonic diseaseGastrointestinal diseasesPatient seraNormal controlsPathological significanceWestern blotDisease statesEpithelial cellsNoninvasive approachUnique noninvasive approachAntibodiesAutoantibodiesBrush borderPatientsCancer
1994
Beta II-spectrin (fodrin) and beta I epsilon 2-spectrin (muscle) contain NH2- and COOH-terminal membrane association domains (MAD1 and MAD2).
Lombardo C, Weed S, Kennedy S, Forget B, Morrow J. Beta II-spectrin (fodrin) and beta I epsilon 2-spectrin (muscle) contain NH2- and COOH-terminal membrane association domains (MAD1 and MAD2). Journal Of Biological Chemistry 1994, 269: 29212-29219. PMID: 7961888, DOI: 10.1016/s0021-9258(19)62032-6.Peer-Reviewed Original ResearchConceptsPleckstrin homology domainBeta II spectrinHomology domainSequence motifsBeta III-spectrinBrain spectrinGlutathione S-transferase fusion proteinRepeat 1S-transferase fusion proteinMembrane association domainNovel functional motifsCOOH-terminal domainG protein bindingDistinct sequence motifsBovine brain spectrinCOOH-terminal sequenceAssociation domainMembrane associationProtein 4.1Spectrin functionSequence comparisonPlasma membraneFunctional motifsRecombinant proteins
1993
Cloning of a Portion of the Chromosomal Gene and cDNA for Human β-Fodrin, the Nonerythroid Form of β-Spectrin
Chang J, Scarpa A, Eddy R, Byers M, Harris A, Morrow J, Watkins P, Shows T, Forget B. Cloning of a Portion of the Chromosomal Gene and cDNA for Human β-Fodrin, the Nonerythroid Form of β-Spectrin. Genomics 1993, 17: 287-293. PMID: 8406479, DOI: 10.1006/geno.1993.1323.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceBrainCarrier ProteinsChromosome MappingChromosomes, Human, Pair 2Cloning, MolecularDNA ProbesDNA, ComplementaryExonsHumansHybrid CellsIntronsMiceMicrofilament ProteinsMolecular Sequence DataNerve Tissue ProteinsOligonucleotide ProbesRestriction MappingSequence Homology, Amino AcidSpectrinConceptsAmino acid sequenceAcid sequenceNonerythroid formsDNA sequencesSimilar exon/intron organizationGenomic DNAExon/intron organizationSomatic hybrid cell linesCell cDNA libraryHuman genomic librarySingle-copy DNA fragmentsSingle-copy probesComposite DNA sequenceDNA sequence analysisHybrid cell linesIntron organizationChromosomal localizationGenomic clonesGenomic libraryGenomic fragmentChromosomal genesCDNA clonesCDNA libraryChromosome 2Nucleotide sequence
1990
Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin.
Harris A, Morrow J. Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1990, 87: 3009-3013. PMID: 2326262, PMCID: PMC53823, DOI: 10.1073/pnas.87.8.3009.Peer-Reviewed Original Research
1989
Fodrin as a differentiation marker. Redistributions in colonic neoplasia.
Younes M, Harris A, Morrow J. Fodrin as a differentiation marker. Redistributions in colonic neoplasia. American Journal Of Pathology 1989, 135: 1197-212. PMID: 2596576, PMCID: PMC1880505.Peer-Reviewed Original ResearchConceptsPolarized epithelial cellsDistribution of fodrinImmunofluorescent confocal microscopyMadin-Darby canine kidney cellsCultured Madin-Darby canine kidney (MDCK) cellsMicrovillar brush borderCanine kidney cellsCell polarityCytoplasmic faceDisease samplesPlasma membraneReceptor domainPathologic stressMature cellsMDCK cellsFodrinDifferentiation markersTerminal webConfocal microscopyVillus maturationKidney cellsPrecise roleEpithelial cellsCrohn's disease samplesTotal poolCalmodulin Regulates Fodrin Susceptibility to Cleavage by Calciumdependent Protease I
Harris A, Croall D, Morrow J. Calmodulin Regulates Fodrin Susceptibility to Cleavage by Calciumdependent Protease I. Journal Of Biological Chemistry 1989, 264: 17401-17408. PMID: 2551900, DOI: 10.1016/s0021-9258(18)71508-1.Peer-Reviewed Original ResearchConceptsAlpha subunitProtease IAbsence of CaMRegulated proteolysisEukaryotic cellsRegulation of plasticityCortical cytoskeletonCalmodulin bindingQuaternary structureBeta subunitSubunitsTetrameric formCalcium-dependent proteolysisFodrinProteolysisCaM antagonistsAlpha-fodrinFunctional evidenceDifferential susceptibilityCaM.Fodrin proteolysisIsotonic bufferCytoskeletonClose proximityCalmodulinAnkyrin links fodrin to the alpha subunit of Na,K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells.
Morrow J, Cianci C, Ardito T, Mann A, Kashgarian M. Ankyrin links fodrin to the alpha subunit of Na,K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. Journal Of Cell Biology 1989, 108: 455-465. PMID: 2537316, PMCID: PMC2115445, DOI: 10.1083/jcb.108.2.455.Peer-Reviewed Original ResearchConceptsMadin-Darby canine kidney cellsCanine kidney cellsK-ATPaseAlpha subunitMolecular mechanismsMDCK cellsMinor membrane proteinsDistribution of fodrinErythrocyte ankyrinConfluent MDCK cellsBinding of ankyrinKidney cellsHuman erythrocyte ankyrinRenal epithelial cellsCytoplasmic domainNonerythroid cellsMembrane proteinsCortical cytoskeletonBasolateral domainMembrane skeletonPolarized distributionAnkyrinBasolateral marginsCell developmentErythrocyte band 3
1988
The calmodulin-binding site in alpha-fodrin is near the calcium-dependent protease-I cleavage site.
Harris A, Croall D, Morrow J. The calmodulin-binding site in alpha-fodrin is near the calcium-dependent protease-I cleavage site. Journal Of Biological Chemistry 1988, 263: 15754-15761. PMID: 2844821, DOI: 10.1016/s0021-9258(19)37652-5.Peer-Reviewed Original ResearchProteolytic processing of human brain alpha spectrin (fodrin): identification of a hypersensitive site
Harris A, Morrow J. Proteolytic processing of human brain alpha spectrin (fodrin): identification of a hypersensitive site. Journal Of Neuroscience 1988, 8: 2640-2651. PMID: 3074159, PMCID: PMC6569499, DOI: 10.1523/jneurosci.08-07-02640.1988.Peer-Reviewed Original ResearchConceptsLong-term potentiationBrain spectrinCalcium-dependent mechanismCalcium-dependent neutral proteaseCalcium-dependent proteaseCentral molecular mechanismsSite of actionReceptor functionPostsynaptic membraneCalcium-dependent mannerFurther investigationMolecular mechanismsGel overlay techniqueAlpha subunitNeutral proteaseNonerythroid spectrinImportant moleculesProteolytic processingCleavage fragmentsPotentiationProteaseLocalization of villin, a cytoskeletal protein specific to microvilli, in human ileum and colon and in colonic neoplasms
West A, Isaac C, Carboni J, Morrow J, Mooseker M, Barwick K. Localization of villin, a cytoskeletal protein specific to microvilli, in human ileum and colon and in colonic neoplasms. Gastroenterology 1988, 94: 343-352. PMID: 3335311, DOI: 10.1016/0016-5085(88)90421-0.Peer-Reviewed Original ResearchA domain of synapsin I involved with actin bundling shares immunologic cross‐reactivity with villin
Petrucci T, Mooseker M, Morrow J. A domain of synapsin I involved with actin bundling shares immunologic cross‐reactivity with villin. Journal Of Cellular Biochemistry 1988, 36: 25-35. PMID: 3125185, DOI: 10.1002/jcb.240360104.Peer-Reviewed Original ResearchConceptsBovine synapsin ISynapsin IActin binding proteinsPeptide mappingTwo-dimensional peptide mapsSmall synaptic vesiclesPhosphorylation controlBundling proteinActin bindingUnrelated proteinsActin bundlesActin filamentsNeuronal phosphoproteinSynapsin I.Binding proteinVivo roleSynaptic vesiclesParent proteinProteinPeptide mapsChymotryptic digestionVillinPeptide fragmentsCross reactFragments
1985
Mechanisms of cytoskeletal regulation: modulation of membrane affinity in avian brush border and erythrocyte spectrins.
Howe C, Sacramone L, Mooseker M, Morrow J. Mechanisms of cytoskeletal regulation: modulation of membrane affinity in avian brush border and erythrocyte spectrins. Journal Of Cell Biology 1985, 101: 1379-1385. PMID: 2931438, PMCID: PMC2113910, DOI: 10.1083/jcb.101.4.1379.Peer-Reviewed Original Research
1984
Mechanisms of cytoskeletal regulation. Modulation of aortic endothelial cell spectrin by the extracellular matrix.
Pratt B, Harris A, Morrow J, Madri J. Mechanisms of cytoskeletal regulation. Modulation of aortic endothelial cell spectrin by the extracellular matrix. American Journal Of Pathology 1984, 117: 349-54. PMID: 6507585, PMCID: PMC1900592.Peer-Reviewed Original ResearchConceptsAortic endothelial cellsEndothelial cellsCultured aortic endothelial cellsSurface receptorsCalf aortic endothelial cellsVascular responsesExtracellular matrixVariety of stimuliPeripheral localizationWound repairReceptorsTransducers of informationMembrane receptorsCellsFibrillar formSpectrin distributionIntracellular distributionNonerythroid spectrinNeoplasiaInjuryFibronectin substrate