2021
Identifying treatment options for BRAFV600 wild-type metastatic melanoma: A SU2C/MRA genomics-enabled clinical trial
LoRusso PM, Sekulic A, Sosman JA, Liang WS, Carpten J, Craig DW, Solit DB, Bryce AH, Kiefer JA, Aldrich J, Nasser S, Halperin R, Byron SA, Pilat MJ, Boerner SA, Durecki D, Hendricks WPD, Enriquez D, Izatt T, Keats J, Legendre C, Markovic SN, Weise A, Naveed F, Schmidt J, Basu GD, Sekar S, Adkins J, Tassone E, Sivaprakasam K, Zismann V, Calvert VS, Petricoin EF, Fecher LA, Lao C, Eder JP, Vogelzang NJ, Perlmutter J, Gorman M, Manica B, Fox L, Schork N, Zelterman D, DeVeaux M, Joseph RW, Cowey CL, Trent JM. Identifying treatment options for BRAFV600 wild-type metastatic melanoma: A SU2C/MRA genomics-enabled clinical trial. PLOS ONE 2021, 16: e0248097. PMID: 33826614, PMCID: PMC8026051, DOI: 10.1371/journal.pone.0248097.Peer-Reviewed Original ResearchConceptsMetastatic melanomaAlternate treatment armResponse-evaluable patientsMetastatic melanoma patientsComprehensive genomic profilingAdditional drug classesCutaneous metastatic melanomaLack of responseCombination BRAFStable diseaseTwo-stage optimal designPartial responseProgressive diseaseCare therapyMelanoma patientsMelanoma TrialTreatment armsTreatment optionsBRAFV600 mutationsClinical trialsDrug classesResponse ratePatientsDrug selectionMelanomaClinical Efficacy of Olaparib in IDH1/IDH2-Mutant Mesenchymal Sarcomas
Eder JP, Doroshow DB, T. K, Keedy VL, Sklar JS, Glazer P, Bindra R, Shapiro GI. Clinical Efficacy of Olaparib in IDH1/IDH2-Mutant Mesenchymal Sarcomas. JCO Precision Oncology 2021, 5: 466-472. PMID: 34994649, PMCID: PMC9848565, DOI: 10.1200/po.20.00247.Peer-Reviewed Original ResearchConceptsPulmonary epithelioid hemangioendotheliomaStable diseaseEpithelioid hemangioendotheliomaClinical benefitClinical benefit rateOpen-label studyPrimary end pointPoly (ADP-ribose) polymerase inhibitionDefective homologous recombination (HR) repairMesenchymal sarcomaObjective responsePartial responseClinical efficacyPatient populationBenefit rateCombination trialsPatientsSolid tumorsIDH1/2-mutant tumorsIDH1/2 mutationsPARP inhibitorsEnd pointPARP inhibitionTumorsOlaparib
2005
Proteasome Inhibition With Bortezomib (PS-341): A Phase I Study With Pharmacodynamic End Points Using a Day 1 and Day 4 Schedule in a 14-Day Cycle
Hamilton AL, Eder JP, Pavlick AC, Clark JW, Liebes L, Garcia-Carbonero R, Chachoua A, Ryan DP, Soma V, Farrell K, Kinchla N, Boyden J, Yee H, Zeleniuch-Jacquotte A, Wright J, Elliott P, Adams J, Muggia FM. Proteasome Inhibition With Bortezomib (PS-341): A Phase I Study With Pharmacodynamic End Points Using a Day 1 and Day 4 Schedule in a 14-Day Cycle. Journal Of Clinical Oncology 2005, 23: 6107-6116. PMID: 16135477, DOI: 10.1200/jco.2005.01.136.Peer-Reviewed Original ResearchConceptsDose-limiting toxicityDay 1Main dose-limiting toxicityPhase IGrade 3 thrombocytopeniaPhase II doseCell lung cancerPharmacodynamic end pointsRenal cell carcinomaProteasome activityNovel antineoplastic agentPartial responseCell carcinomaLung cancerToxicity profileWeek scheduleAntitumor effectsDose levelsPatientsSolid tumorsTotal doseHigh dosesTotal dosesNeurotoxic agentsBaseline activity
1988
Malignant melanoma. Treatment with high-dose combination alkylating agent chemotherapy and autologous bone marrow support.
Shea TC, Antman KH, Eder JP, Elias A, Peters WP, Schryber S, Henner WD, Schoenfeld DA, Schnipper LE, Frei E. Malignant melanoma. Treatment with high-dose combination alkylating agent chemotherapy and autologous bone marrow support. JAMA Dermatology 1988, 124: 878-84. PMID: 3288124, DOI: 10.1001/archderm.124.6.878.Peer-Reviewed Original ResearchConceptsAutologous bone marrow supportBone marrow supportHigh-dose combinationMarrow supportAgent chemotherapyPhase 2 doseMetastatic malignant melanomaOverall response rateMedian survivalComplete responsePartial responseSurgical resectionAdditional patientsMedian timeResidual tumorTreatment courseMalignant melanomaMarrow reconstitutionChemotherapyToxic reactionsPatientsResponse rateEntire groupMonthsDisease
1987
High-dose combination alkylating agent preparative regimen with autologous bone marrow support: the Dana-Farber Cancer Institute/Beth Israel Hospital experience.
Antman K, Eder JP, Elias A, Shea T, Peters WP, Andersen J, Schryber S, Henner WD, Finberg R, Wilmore D. High-dose combination alkylating agent preparative regimen with autologous bone marrow support: the Dana-Farber Cancer Institute/Beth Israel Hospital experience. Journal Of The National Cancer Institute 1987, 71: 119-25. PMID: 3542208.Peer-Reviewed Original ResearchConceptsVeno-occlusive diseaseEvaluable patientsBreast cancerPrior treatmentAutologous bone marrow supportDose-limiting toxic effectFatal veno-occlusive diseaseCourses of cyclophosphamideDose level 4Bone marrow supportGood partial responseHigh-dose combinationDose level 5Metastatic breast cancerThree-drug combinationPolymorphonuclear leukocyte countAddition of melphalanHighest dose levelToxic effectsMarrow reinfusionMarrow supportPreparative regimenMost patientsPartial responseTransfusion independence
1986
High-dose combination alkylating agent chemotherapy with autologous bone marrow support for metastatic breast cancer.
Eder JP, Antman K, Peters W, Henner WD, Elias A, Shea T, Schryber S, Andersen J, Come S, Schnipper L. High-dose combination alkylating agent chemotherapy with autologous bone marrow support for metastatic breast cancer. Journal Of Clinical Oncology 1986, 4: 1592-7. PMID: 3534155, DOI: 10.1200/jco.1986.4.11.1592.Peer-Reviewed Original ResearchConceptsAutologous bone marrow supportBone marrow supportInflammatory breast cancerMetastatic breast cancerPartial responseComplete responseBreast cancerPrior chemotherapyMarrow supportTumor regressionHigh-dose combination chemotherapy regimenMetastatic breast cancer patientsHigher partial responsePhase II regimenPrior combination chemotherapyHigh-dose regimenHigh-dose combinationCombination chemotherapy regimenBreast cancer patientsBone marrow harvestEvaluable patientsChemotherapy regimenAgent chemotherapyFirst recurrenceMedian survival