2014
Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance
Strohbehn G, Coman D, Han L, Ragheb RR, Fahmy TM, Huttner AJ, Hyder F, Piepmeier JM, Saltzman WM, Zhou J. Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance. Journal Of Neuro-Oncology 2014, 121: 441-449. PMID: 25403507, PMCID: PMC4323763, DOI: 10.1007/s11060-014-1658-0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBrain NeoplasmsConvectionDrug Delivery SystemsFerric CompoundsGlioblastomaHumansImage Processing, Computer-AssistedLactic AcidMagnetic Resonance ImagingNanoparticlesNeuroimagingPolyglycolic AcidPolylactic Acid-Polyglycolic Acid CopolymerRatsRats, Sprague-DawleyConceptsBrain-penetrating nanoparticlesSuperparamagnetic iron oxideEfficient deliveryDrug-loaded nanoparticlesDistribution of nanoparticlesTransverse relaxivityPLGA nanoparticlesNanoparticlesConvection-enhanced deliveryDelivery platformFuture clinical applicationsUniversal tumor recurrenceClinical translationSignal attenuationDetection modalitiesIron oxideSame morphologyParticle distributionDeliveryGroundbreaking approachClinical applicationRelevant volumesRelaxivityTreatment of GBMOxide
2013
Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma
Zhou J, Patel TR, Sirianni RW, Strohbehn G, Zheng MQ, Duong N, Schafbauer T, Huttner AJ, Huang Y, Carson RE, Zhang Y, Sullivan DJ, Piepmeier JM, Saltzman WM. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 11751-11756. PMID: 23818631, PMCID: PMC3718184, DOI: 10.1073/pnas.1304504110.Peer-Reviewed Original Research
2012
Neurosurgical Approach
Moliterno JA, Patel TR, Piepmeier JM. Neurosurgical Approach. The Cancer Journal 2012, 18: 20-25. PMID: 22290253, DOI: 10.1097/ppo.0b013e3183243f6e3.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overBrain NeoplasmsCombined Modality TherapyGlioblastomaHumansMiddle AgedConceptsMagnetic resonance imagingTumor cellsResonance imagingAggressive surgical resectionAggressive tumor removalFunctional brain tissueFrequency of seizuresExtent of resectionGoal of surgeryInfiltrative tumor cellsPreferred initial stepFunctional magnetic resonance imagingProliferative tumor cellsAdjuvant therapyAggressive resectionSurgical resectionTumors recurCritical cortical regionsNeurologic impairmentTumor burdenProspective studyTumor resectionTumor removalInfiltrative tumorsMalignant gliomas
2010
Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma†
Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J, Barnett G, Shaffrey M, Ram Z, Piepmeier J, Prados M, Croteau D, Pedain C, Leland P, Husain SR, Joshi BH, Puri RK, Group F. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma†. Neuro-Oncology 2010, 12: 871-881. PMID: 20511192, PMCID: PMC2940677, DOI: 10.1093/neuonc/nop054.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAgedAntineoplastic AgentsBrain NeoplasmsCarmustineCatheters, IndwellingConvectionDecanoic AcidsDrug Administration RoutesExotoxinsFemaleGlioblastomaHumansInterleukin-13Kaplan-Meier EstimateMagnetic Resonance ImagingMaleMiddle AgedNeoplasm Recurrence, LocalPolyestersRecombinant Fusion ProteinsYoung AdultConceptsConvection-enhanced deliveryCintredekin besudotoxGliadel wafersMedian survivalTumor resectionGlioblastoma multiformeEfficacy-evaluable populationAdverse event profileHealth-related qualityPhase III evaluationTime of randomizationEvaluable populationTertiary endpointsPrimary endpointAdult patientsBaseline characteristicsFirst recurrenceOverall survivalPulmonary embolismActive comparatorTreatment armsIL13-PE38QQRIntraparenchymal catheterSurvival differencesGBM patients
2004
Non-enhancing de novo glioblastoma: report of two cases
Cohen-Gadol AA, DiLuna ML, Bannykh SI, Piepmeier JM, Spencer DD. Non-enhancing de novo glioblastoma: report of two cases. Neurosurgical Review 2004, 27: 281-285. PMID: 15449198, DOI: 10.1007/s10143-004-0346-5.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedBrain NeoplasmsGlioblastomaHumansMagnetic Resonance ImagingMaleRadiographyTumor Suppressor Protein p53ConceptsRing-enhancing lesionsLow-grade lesionsSecond patientMalignant gliomasRight medial temporal lobe lesionInitial MRI evaluationTraditional imaging findingsDe novo lesionsNew-onset seizuresMedial temporal lobe lesionsT2 signal changeRight precentral gyrusTemporal lobe lesionsMedial temporal lesionsRight frontal lesionDe novo glioblastomaEarly MRINovo lesionsNeurological examinationSubsequent resectionImaging findingsFirst patientMRI evaluationTumor suggestiveTemporal lesions
1998
Suppression of matrix metalloproteinase-2-mediated cell invasion in U87MG, human glioma cells by anti-microtubule agent: in vitro study
Yoshida D, Piepmeier J, Bergenheim T, Henriksson R, Teramoto A. Suppression of matrix metalloproteinase-2-mediated cell invasion in U87MG, human glioma cells by anti-microtubule agent: in vitro study. British Journal Of Cancer 1998, 77: 21-25. PMID: 9459141, PMCID: PMC2151249, DOI: 10.1038/bjc.1998.4.Peer-Reviewed Original ResearchConceptsMatrix metalloproteinase-2Dose-dependent mannerEstramustine groupMetalloproteinase-2Glioma cellsCell invasionMalignant glioma cellsHuman glioma cellsAnti-microtubule agentsControl groupEstramustineMatrix metalloproteinasesInfiltrative capacityCell invasivenessAntimicrotubule agentsCell proliferationSignificant suppressionDisassembly of microtubulesSignificant differencesU87MG cellsLower ratesInvasionHaptoinvasionCellsGroup
1996
Targeting microtubule-associated proteins in glioblastoma: A new strategy for selective therapy
Piepmeier J, Pedersen P, Yoshida D, Greer C. Targeting microtubule-associated proteins in glioblastoma: A new strategy for selective therapy. Annals Of Surgical Oncology 1996, 3: 543-549. PMID: 8915486, DOI: 10.1007/bf02306087.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic Agents, AlkylatingBrain NeoplasmsCarrier ProteinsCell LineColony-Forming Units AssayEstramustineFlow CytometryGlioblastomaHumansImmunohistochemistryMiceMice, NudeMicrotubule-Associated ProteinsNeoplasm TransplantationRadiation-Sensitizing AgentsThymidineTransplantation, HeterologousTumor Cells, CulturedConceptsSubcutaneous xenograftsGlioblastoma cellsHuman glioblastoma cellsMicrotubule-associated proteinsHuman glioblastomaPotent antimitotic effectsUse of estramustineAntimicrotubule agentsEstramustine-binding proteinPreclinical dataEstramustineNeoplastic cellsAntiproliferative effectsSelective therapyGlioma cellsAntimitotic effectCytotoxic effectsGlioblastomaUseful targetTherapyXenograftsLaboratory investigationsSelective effectAntimitotic activityCellsIn vitro inhibition of cell proliferation, viability, and invasiveness in U87MG human glioblastoma cells by estramustine phosphate.
Yoshida D, Piepmeier J, Teramoto A. In vitro inhibition of cell proliferation, viability, and invasiveness in U87MG human glioblastoma cells by estramustine phosphate. Neurosurgery 1996, 39: 360-6. PMID: 8832674, DOI: 10.1097/00006123-199608000-00025.Peer-Reviewed Original ResearchConceptsEstramustine phosphateMumol/LGlioblastoma cell linesCell proliferationRelative survival ratesTreatment of glioblastomaCell linesTime-dependent depressionAnti-invasive abilityDevelopment of agentsHuman glioblastoma cell linesU87MG human glioblastoma cellsHuman glioblastoma cellsSurvival rateTumor proliferationDrug concentrationsMonotetrazolium assayAntiproliferative capacityCell invasivenessGlioblastoma cellsNon-DNA targetsBasement membraneInvasion indexInvasive potentialSelective antiproliferative activityA phase III randomized prospective trial of external beam radiotherapy, mitomycin C, carmustine, and 6-mercaptopurine for the treatment of adults with anaplastic glioma of the brain
Halperin E, Herndon J, Schold S, Brown M, Vick N, Cairncross J, Macdonald D, Gaspar L, Fischer B, Dropcho E, Rosenfeld S, Morowitz R, Piepmeier J, Hait W, Byrne T, Salter M, Imperato J, Khandekar J, Paleologos N, Burger P, Bentel G, Friedman A. A phase III randomized prospective trial of external beam radiotherapy, mitomycin C, carmustine, and 6-mercaptopurine for the treatment of adults with anaplastic glioma of the brain. International Journal Of Radiation Oncology • Biology • Physics 1996, 34: 793-802. PMID: 8598355, DOI: 10.1016/0360-3016(95)02025-x.Peer-Reviewed Original ResearchConceptsExternal beam radiotherapyKarnofsky performance statusMedian survivalSurvival benefitERT groupAnaplastic gliomasBeam radiotherapyMitomycin CVs. 11.4 monthsProportion of patientsSignificant survival benefitPossible survival benefitTreatment of adultsYears of ageBCNU groupPerformance statusProspective trialHistologic diagnosisMalignant gliomasMito groupStereotactic biopsyPatientsGreater riskFourth weekThird dayIn vitro and in vivo inhibition of glioblastoma and neuroblastoma with MDL101731, a novel ribonucleoside diphosphate reductase inhibitor.
Piepmeier J, Rabidou N, Schold S, Bitonti A, Prakash N, Bush T. In vitro and in vivo inhibition of glioblastoma and neuroblastoma with MDL101731, a novel ribonucleoside diphosphate reductase inhibitor. Cancer Research 1996, 56: 359-61. PMID: 8542592.Peer-Reviewed Original ResearchConceptsMalignant brain tumorsMedian survivalControl animalsAthymic miceBrain tumorsReductase inhibitorsHuman malignant brain tumorsHuman glioblastomaDays of treatmentSK-N-MCConcentration-dependent inhibitionTumor regressionIntracerebral implantsIntracerebral xenograftsXenograft modelGlioblastoma cell linesVivo inhibitionPotent antiproliferative activityNeuroblastomaGlioblastomaSurvivalCell linesXenograftsNanomolar concentrationsTumors
1994
Selective antimitotic effects of estramustine correlate with its antimicrotubule properties on glioblastoma and astrocytes.
Yoshida D, Cornell-Bell A, Piepmeier J. Selective antimitotic effects of estramustine correlate with its antimicrotubule properties on glioblastoma and astrocytes. Neurosurgery 1994, 34: 863-7; discussion 867-8. PMID: 8052384, DOI: 10.1227/00006123-199405000-00012.Peer-Reviewed Original ResearchConceptsAntimitotic effectHuman glioblastoma cellsGlioma cellsGlioblastoma cellsEstramustine binding proteinModest antiproliferative effectsConcentration-dependent cytotoxic effectConcentration-dependent inhibitionEstramustine treatmentImmunohistochemical analysisAstrocyte viabilityEstramustineAstrocyte culturesAntiproliferative effectsMonoclonal antibodiesAstrocytesHuman glioblastomaTumor culturesCytotoxic effectsDimethylthiazol-2Diphenyltetrazolium bromideAntimicrotubule activityDeoxyribonucleic acid synthesisEstramustine sensitizes human glioblastoma cells to irradiation.
Yoshida D, Piepmeier J, Weinstein M. Estramustine sensitizes human glioblastoma cells to irradiation. Cancer Research 1994, 54: 1415-7. PMID: 8137240.Peer-Reviewed Original ResearchConceptsMicroM estramustineRadiation enhancerGlioma cellsEffect of estramustineGlioblastoma cellsG2M cellsConcentration-dependent inhibitionMalignant glioma cellsHuman glioma cellsMinimal systemic toxicityEstramustineHuman glioblastoma cellsPotentiation factorSystemic toxicityG2M fractionFlow cytometryClonogenic survivalAntimicrotubule agentsCytotoxic effectsControl cellsH treatmentDaily scheduleCellsCell cycleRadiation sensitivity
1993
Estramustine and estrone analogs rapidly and reversibly inhibit deoxyribonucleic acid synthesis and alter morphology in cultured human glioblastoma cells.
Piepmeier J, Keefe D, Weinstein M, Yoshida D, Zielinski J, Lin T, Chen Z, Naftolin F. Estramustine and estrone analogs rapidly and reversibly inhibit deoxyribonucleic acid synthesis and alter morphology in cultured human glioblastoma cells. Neurosurgery 1993, 32: 422-30; discussion 430-1. PMID: 8384327, DOI: 10.1227/00006123-199303000-00014.Peer-Reviewed Original Research
1990
The effect of calmodulin inhibitors with bleomycin on the treatment of patients with high grade gliomas.
Hait W, Byrne T, Piepmeier J, Durivage H, Choudhury S, Davis C, Gates J. The effect of calmodulin inhibitors with bleomycin on the treatment of patients with high grade gliomas. Cancer Research 1990, 50: 6636-40. PMID: 1698540.Peer-Reviewed Original ResearchConceptsCentral nervous systemClinical trialsNormal brainNervous systemPhase II clinical trialPhase I clinical trialFatal pulmonary toxicityObjective tumor responseTreatment of patientsHigh-grade gliomasComplete responseCombination therapyPulmonary toxicityTumor responseFatal malignancyMalignant gliomasPreclinical modelsPharmacological characteristicsGrade gliomasGlioblastoma multiformePatientsGliomasRat cerebrumCalmodulin inhibitorsBleomycin