2016
Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging
Han L, Kong DK, Zheng MQ, Murikinati S, Ma C, Yuan P, Li L, Tian D, Cai Q, Ye C, Holden D, Park JH, Gao X, Thomas JL, Grutzendler J, Carson RE, Huang Y, Piepmeier JM, Zhou J. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging. ACS Nano 2016, 10: 4209-4218. PMID: 26967254, PMCID: PMC5257033, DOI: 10.1021/acsnano.5b07573.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBiological TransportBlood-Brain BarrierBrain NeoplasmsCell Line, TumorDecanoic AcidsDrug Delivery SystemsEthanolaminesFemaleGenetic TherapyHeterograftsHumansMatrix Metalloproteinase 2MiceMice, Inbred C57BLNanoparticlesOptical ImagingPaclitaxelPermeabilityPolymersPurinesPyrazolesScorpion VenomsTranscytosisTumor MicroenvironmentConceptsBlood-brain barrierLow delivery efficiencyTransport of nanoparticlesCancer gene therapyNanoparticle deliveryMore nanoparticlesBrain tumorsNanoparticlesDelivery efficiencyGene therapySystemic deliveryNPsBrain malignanciesBBB modulatorsPharmacological agentsBrain cancerBrain regionsTumorsDeliveryBrainImproved treatmentInadequate amountsPositive feedback loopChemotherapyMalignancy
2014
Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance
Strohbehn G, Coman D, Han L, Ragheb RR, Fahmy TM, Huttner AJ, Hyder F, Piepmeier JM, Saltzman WM, Zhou J. Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance. Journal Of Neuro-Oncology 2014, 121: 441-449. PMID: 25403507, PMCID: PMC4323763, DOI: 10.1007/s11060-014-1658-0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBrain NeoplasmsConvectionDrug Delivery SystemsFerric CompoundsGlioblastomaHumansImage Processing, Computer-AssistedLactic AcidMagnetic Resonance ImagingNanoparticlesNeuroimagingPolyglycolic AcidPolylactic Acid-Polyglycolic Acid CopolymerRatsRats, Sprague-DawleyConceptsBrain-penetrating nanoparticlesSuperparamagnetic iron oxideEfficient deliveryDrug-loaded nanoparticlesDistribution of nanoparticlesTransverse relaxivityPLGA nanoparticlesNanoparticlesConvection-enhanced deliveryDelivery platformFuture clinical applicationsUniversal tumor recurrenceClinical translationSignal attenuationDetection modalitiesIron oxideSame morphologyParticle distributionDeliveryGroundbreaking approachClinical applicationRelevant volumesRelaxivityTreatment of GBMOxide
2013
Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma
Zhou J, Patel TR, Sirianni RW, Strohbehn G, Zheng MQ, Duong N, Schafbauer T, Huttner AJ, Huang Y, Carson RE, Zhang Y, Sullivan DJ, Piepmeier JM, Saltzman WM. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 11751-11756. PMID: 23818631, PMCID: PMC3718184, DOI: 10.1073/pnas.1304504110.Peer-Reviewed Original Research
2011
Polymeric nanoparticles for drug delivery to the central nervous system
Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Advanced Drug Delivery Reviews 2011, 64: 701-705. PMID: 22210134, PMCID: PMC3323692, DOI: 10.1016/j.addr.2011.12.006.Peer-Reviewed Original ResearchBiodegradable poly(amine-co-ester) terpolymers for targeted gene delivery
Zhou J, Liu J, Cheng CJ, Patel TR, Weller CE, Piepmeier JM, Jiang Z, Saltzman WM. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nature Materials 2011, 11: 82-90. PMID: 22138789, PMCID: PMC4180913, DOI: 10.1038/nmat3187.Peer-Reviewed Original ResearchConceptsGene deliveryNon-viral gene deliveryEfficient gene deliveryGene delivery abilityTargeted gene deliveryHighest molecular weight terpolymerDelivery abilityTargeted deliveryLipofectamine 2000Dialkyl diesterVivo applicationsPolycationic vectorsSpecific ring sizesTRAIL geneHigh efficiencyCharge densityLow charge densityDeliveryPolyethylenimineMinimal toxicityEfficiencyHydrophobicityLactone contentDensityApplications
2009
The future of neuro-oncology
Piepmeier JM. The future of neuro-oncology. Acta Neurochirurgica 2009, 151: 1343. PMID: 19639245, DOI: 10.1007/s00701-009-0471-6.Peer-Reviewed Original Research
2005
Novel Tumor-Specific Isoforms of BEHAB/Brevican Identified in Human Malignant Gliomas
Viapiano MS, Bi WL, Piepmeier J, Hockfield S, Matthews RT. Novel Tumor-Specific Isoforms of BEHAB/Brevican Identified in Human Malignant Gliomas. Cancer Research 2005, 65: 6726-6733. PMID: 16061654, DOI: 10.1158/0008-5472.can-05-0585.Peer-Reviewed Original ResearchConceptsBEHAB/brevicanHigh-grade gliomasMalignant gliomasBrain tumorsNew potential therapeutic targetsPrimary brain tumorsNormal adult brainDeadly brain tumorCentral nervous systemPotential therapeutic targetLow-grade gliomasHuman malignant gliomasNew therapeutic strategiesPathologic courseSimilar histologyBenign gliomasAdult brainTherapeutic strategiesDiffuse invasionTherapeutic targetGlioma progressionNervous systemInvasive abilityBrain tissueGliomas
1996
Targeting microtubule-associated proteins in glioblastoma: A new strategy for selective therapy
Piepmeier J, Pedersen P, Yoshida D, Greer C. Targeting microtubule-associated proteins in glioblastoma: A new strategy for selective therapy. Annals Of Surgical Oncology 1996, 3: 543-549. PMID: 8915486, DOI: 10.1007/bf02306087.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic Agents, AlkylatingBrain NeoplasmsCarrier ProteinsCell LineColony-Forming Units AssayEstramustineFlow CytometryGlioblastomaHumansImmunohistochemistryMiceMice, NudeMicrotubule-Associated ProteinsNeoplasm TransplantationRadiation-Sensitizing AgentsThymidineTransplantation, HeterologousTumor Cells, CulturedConceptsSubcutaneous xenograftsGlioblastoma cellsHuman glioblastoma cellsMicrotubule-associated proteinsHuman glioblastomaPotent antimitotic effectsUse of estramustineAntimicrotubule agentsEstramustine-binding proteinPreclinical dataEstramustineNeoplastic cellsAntiproliferative effectsSelective therapyGlioma cellsAntimitotic effectCytotoxic effectsGlioblastomaUseful targetTherapyXenograftsLaboratory investigationsSelective effectAntimitotic activityCellsEstramustine in malignant glioma
Bergenheim A, Henriksson R, Piepmeier J, Yoshida D. Estramustine in malignant glioma. Journal Of Neuro-Oncology 1996, 30: 81-89. PMID: 8865006, DOI: 10.1007/bf00177446.Peer-Reviewed Original ResearchBEHAB (brain enriched hyaluronan binding) is expressed in surgical samples of glioma and in intracranial grafts of invasive glioma cell lines.
Jaworski D, Kelly G, Piepmeier J, Hockfield S. BEHAB (brain enriched hyaluronan binding) is expressed in surgical samples of glioma and in intracranial grafts of invasive glioma cell lines. Cancer Research 1996, 56: 2293-8. PMID: 8625302.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAnimalsBiomarkers, TumorBrain NeoplasmsBrevicanCarrier ProteinsChild, PreschoolChondroitin Sulfate ProteoglycansFemaleGliomaHumansHyaluronic AcidIn Situ HybridizationLectins, C-TypeMaleMiddle AgedNeoplasm InvasivenessNeoplasm ProteinsNeoplasm TransplantationNerve Tissue ProteinsRatsRats, Inbred LewRats, Sprague-DawleyTumor Cells, CulturedConceptsGlioma cell linesSurgical samplesIntracranial graftsCell linesAdult human cortexInvasive glioma cell linesBrain metastasesNonglial tumorsNoninvasive cell linesMalignant gliomasExtracellular brainNormal brainTumor invasionHyaluronan-binding proteinHuman cortexGliomasTumorsInvasive behaviorStandard cell culture conditionsGraftBrainBEHABCell culture conditionsSelective markerMetastasisIn vitro and in vivo inhibition of glioblastoma and neuroblastoma with MDL101731, a novel ribonucleoside diphosphate reductase inhibitor.
Piepmeier J, Rabidou N, Schold S, Bitonti A, Prakash N, Bush T. In vitro and in vivo inhibition of glioblastoma and neuroblastoma with MDL101731, a novel ribonucleoside diphosphate reductase inhibitor. Cancer Research 1996, 56: 359-61. PMID: 8542592.Peer-Reviewed Original ResearchConceptsMalignant brain tumorsMedian survivalControl animalsAthymic miceBrain tumorsReductase inhibitorsHuman malignant brain tumorsHuman glioblastomaDays of treatmentSK-N-MCConcentration-dependent inhibitionTumor regressionIntracerebral implantsIntracerebral xenograftsXenograft modelGlioblastoma cell linesVivo inhibitionPotent antiproliferative activityNeuroblastomaGlioblastomaSurvivalCell linesXenograftsNanomolar concentrationsTumors
1995
Verapamil treatment attenuates immunoreactive GFAP at cerebral cortical lesion site
Klepper S, Naftolin F, Piepmeier J. Verapamil treatment attenuates immunoreactive GFAP at cerebral cortical lesion site. Brain Research 1995, 695: 245-249. PMID: 8556338, DOI: 10.1016/0006-8993(95)00825-b.Peer-Reviewed Original ResearchConceptsGFAP-like immunoreactivityGlial fibrillary acidic proteinSaline groupCortical lesionsLocal injectionNeedle lesionsLesion siteL-type calcium channel blockerCerebral cortical lesionsCortical lesion sitesL-type calcium channelsCalcium channel blockersSprague-Dawley ratsImmunoreactive glial fibrillary acidic proteinTime of lesioningFibrillary acidic proteinH post lesionTransmembrane calcium fluxVerapamil treatmentReactive astrocytesPost lesionContralateral hemisphereChannel blockersCalcium channelsAntigen labeling
1983
Laminar distributions of 2-deoxyglucose uptake in the rat spinal cord following electrical stimulation of the sciatic nerve
Piepmeier J, Kauer J, Greer C. Laminar distributions of 2-deoxyglucose uptake in the rat spinal cord following electrical stimulation of the sciatic nerve. Brain Research 1983, 259: 167-171. PMID: 6824931, DOI: 10.1016/0006-8993(83)91083-1.Peer-Reviewed Original Research