2016
Methionine restriction beyond life‐span extension
Ables GP, Hens JR, Nichenametla SN. Methionine restriction beyond life‐span extension. Annals Of The New York Academy Of Sciences 2016, 1363: 68-79. PMID: 26916321, DOI: 10.1111/nyas.13014.Peer-Reviewed Original ResearchConceptsMethionine restrictionLife span extensionPossible downstream effectorsMitochondrial oxidative stressAge-related diseasesCystathionine β-synthaseIntracellular regulatory mechanismsEpigenetic mechanismsNoncoding RNAsDownstream effectorsSpecific genesReactive oxygen speciesRegulatory mechanismsCell cycleBody sizeMethionine cycleEpigeneticsCancer progressionΒ-synthaseDietary methionine restrictionCell apoptosisFactor 1Fibroblast growth factor 21Hepatic glucose metabolismInsulin-like growth factor-1
2006
Initial Characterization of PTH‐Related Protein Gene‐Driven lacZ Expression in the Mouse*
Chen X, Macica CM, Dreyer BE, Hammond VE, Hens JR, Philbrick WM, Broadus AE. Initial Characterization of PTH‐Related Protein Gene‐Driven lacZ Expression in the Mouse*. Journal Of Bone And Mineral Research 2006, 21: 113-123. PMID: 16355280, DOI: 10.1359/jbmr.051005.Peer-Reviewed Original Research
2005
TOPGAL Mice Show That the Canonical Wnt Signaling Pathway Is Active During Bone Development and Growth and Is Activated by Mechanical Loading In Vitro*
Hens JR, Wilson KM, Dann P, Chen X, Horowitz MC, Wysolmerski JJ. TOPGAL Mice Show That the Canonical Wnt Signaling Pathway Is Active During Bone Development and Growth and Is Activated by Mechanical Loading In Vitro*. Journal Of Bone And Mineral Research 2005, 20: 1103-1113. PMID: 15940363, DOI: 10.1359/jbmr.050210.Peer-Reviewed Original ResearchConceptsTOPGAL miceBone developmentCanonical WntMature skeletonNeonatal bone developmentCanonical Wnt Signaling PathwayExpression of WntActivation of WntWnt Signaling PathwayX-gal stainingCalvarial cellsT-cell factorBone massCanonical Wnt activityCanonical Wnt signalingPrimary calvarial cell culturesMiceAnabolic activityPrimary calvarial cellsRT-PCRCell factorCultured calvarial cellsNeonatal skeletonCollagen ISignaling pathways