2003
Detection and characterization of enzyme intermediates: utility of rapid chemical quench methodology and single enzyme turnover experiments
Anderson K. Detection and characterization of enzyme intermediates: utility of rapid chemical quench methodology and single enzyme turnover experiments. 2003, 19-48. DOI: 10.1093/oso/9780198524946.003.0002.Peer-Reviewed Original ResearchEnzyme active siteEnzyme intermediateProtein structure-function studiesSteady-state kinetic studiesStructure-function studiesTransient kinetic approachActive siteMolecule of substrateEnzyme catalysisQuenching methodologyEnzymeTurnover experimentsTransient kinetic techniquesStructure-based drug designEnzyme Transition StatesDrug designMechanistic informationKinetic techniquesSubstrate(sMillisecond time scaleProteinSitesPathwayKinetic studiesIntermediate
1998
Substrate Channeling and Domain−Domain Interactions in Bifunctional Thymidylate Synthase−Dihydrofolate Reductase †
Liang P, Anderson K. Substrate Channeling and Domain−Domain Interactions in Bifunctional Thymidylate Synthase−Dihydrofolate Reductase †. Biochemistry 1998, 37: 12195-12205. PMID: 9724533, DOI: 10.1021/bi9803168.Peer-Reviewed Original ResearchConceptsDHFR active siteActive siteTS active siteCrystal structureTransient kinetic analysisEnzyme active siteBifunctional TS-DHFRProtein surfaceTS-DHFRKinetics of substrateReductase enzymeSingle polypeptide chainKinetic analysisDihydrofolateThymidylate synthasePolypeptide chainSubstrateEnzymeStructureDomain-domain interactionsSpecies of protozoaInteractionKineticsL. majorChain
1997
Detection and Identification of Transient Enzyme Intermediates Using Rapid Mixing, Pulsed-Flow Electrospray Mass Spectrometry †
Paiva A, Tilton R, Crooks G, Huang L, Anderson K. Detection and Identification of Transient Enzyme Intermediates Using Rapid Mixing, Pulsed-Flow Electrospray Mass Spectrometry †. Biochemistry 1997, 36: 15472-15476. PMID: 9398276, DOI: 10.1021/bi971883i.Peer-Reviewed Original ResearchConceptsTetrahedral intermediateElectrospray ionization ion trap mass spectrometerIon trap mass spectrometerNegative ion mass spectraElectrospray ionization mass spectrometryCollision-induced dissociationEnzyme intermediateIon mass spectraTrap mass spectrometerIonization mass spectrometryEnzyme reaction intermediatesElectrospray ionizationDaughter ionsSubsecond time scaleEnzyme active siteReaction intermediatesAtomic mass unitsMass spectraMass spectrometerChemical quench studiesQuenching studiesMass spectrometryRapid mixing deviceQuenching methodActive sitePre-Steady-State Kinetic Analysis of the Trichodiene Synthase Reaction Pathway †
Cane D, Chiu H, Liang P, Anderson K. Pre-Steady-State Kinetic Analysis of the Trichodiene Synthase Reaction Pathway †. Biochemistry 1997, 36: 8332-8339. PMID: 9204880, DOI: 10.1021/bi963018o.Peer-Reviewed Original ResearchConceptsChemical catalysisReaction pathwaysRapid chemical quench methodsActive siteSteady-state catalytic rateSingle turnover reactionsRate constant kcatEnzyme active siteNerolidyl diphosphateDeuterium isotope effectSingle-turnover experimentsSingle turnover rateState kinetic analysisTurnover reactionsDetection limitCatalytic rateOverall reactionSteady-state releaseIsotope effectRate-limiting stepState kineticsCatalysisReactionQuench methodSynthase reaction
1995
Reevaluating glyphosate as a transition-state inhibitor of EPSP synthase: identification of an EPSP synthase.EPSP.glyphosate ternary complex.
Sammons R, Gruys K, Anderson K, Johnson K, Sikorski J. Reevaluating glyphosate as a transition-state inhibitor of EPSP synthase: identification of an EPSP synthase.EPSP.glyphosate ternary complex. Biochemistry 1995, 34: 6433-40. PMID: 7756274, DOI: 10.1021/bi00019a024.Peer-Reviewed Original ResearchConceptsEPSP synthaseTernary complexShikimate 3-phosphateSteady-state kineticsEnzyme active siteTransition-state analogSubstrate turnoverSynthase reactionTransition-state inhibitorsEnzymeAssociated with PEPUncompetitive inhibitorBinding resultsSynthaseActive siteFluorescence titration experimentsShikimateOxonium ionsTurnoverInteraction of glyphosateTitration experiments
1990
Observation by 13C NMR of the EPSP synthase tetrahedral intermediate bound to the enzyme active site.
Anderson K, Sammons R, Leo G, Sikorski J, Benesi A, Johnson K. Observation by 13C NMR of the EPSP synthase tetrahedral intermediate bound to the enzyme active site. Biochemistry 1990, 29: 1460-5. PMID: 2334707, DOI: 10.1021/bi00458a017.Peer-Reviewed Original ResearchConceptsEnzyme active siteTetrahedral intermediateFormation of pyruvateActive siteEnzyme sitesComparison of quenchingReaction of enzymeTime of incubationTetrahedral centerCompound giving riseReaction pathwaysEnzymatic hydrolysisPeak assignmentsEnzymeNMR experimentsTernary complexNMR measurementsSide productsRate of formationSpectroscopic probesLong time of incubationNMRSpeciesTriethylamineCovalent adducts