2023
Covalent and noncovalent strategies for targeting Lys102 in HIV-1 reverse transcriptase
Prucha G, Henry S, Hollander K, Carter Z, Spasov K, Jorgensen W, Anderson K. Covalent and noncovalent strategies for targeting Lys102 in HIV-1 reverse transcriptase. European Journal Of Medicinal Chemistry 2023, 262: 115894. PMID: 37883896, PMCID: PMC10872499, DOI: 10.1016/j.ejmech.2023.115894.Peer-Reviewed Original Research
2015
Human PrimPol: A Novel Mechanism of Antiviral Toxicity
Mislak A, Anderson K. Human PrimPol: A Novel Mechanism of Antiviral Toxicity. The FASEB Journal 2015, 29 DOI: 10.1096/fasebj.29.1_supplement.710.23.Peer-Reviewed Original ResearchNucleoside reverse transcriptase inhibitorsAntiviral toxicityHIV-1HIV-1-infected patientsNRTI-associated mitochondrial toxicityDaily drug regimensHIV-1 infectionLife-long administrationReverse transcriptase inhibitorsReduced viral loadReverse transcriptasePrevent viral transmissionDrug regimensViral loadTranscriptase inhibitorsRelated morbidityInfected patientsSevere mitochondrial dysfunctionSide effectsPatient adherenceViral replicationMechanisms of toxicityMitochondrial toxicityViral transmissionPatients
2014
Recent Findings on the Mechanisms Involved in Tenofovir Resistance
Iyidogan P, Anderson K. Recent Findings on the Mechanisms Involved in Tenofovir Resistance. Antiviral Chemistry And Chemotherapy 2014, 23: 217-222. PMID: 23744599, PMCID: PMC4077986, DOI: 10.3851/imp2628.Peer-Reviewed Original ResearchConceptsReverse transcriptase inhibitorsDrug resistanceResistance mechanismsNon-nucleoside reverse transcriptase inhibitorsHIV-1 infectionLong-term efficacyMechanism of RTSynergistic antiviral effectTenofovir resistanceAntiretroviral agentsCombination therapyTreatment failureAntiviral synergySafety profileTranscriptase inhibitorsHIV-1TenofovirClinical useAntiviral effectTherapyViral sequencesNucleotide analoguesRegimensEfavirenzCurrent Perspectives on HIV-1 Antiretroviral Drug Resistance
Iyidogan P, Anderson K. Current Perspectives on HIV-1 Antiretroviral Drug Resistance. Viruses 2014, 6: 4095-4139. PMID: 25341668, PMCID: PMC4213579, DOI: 10.3390/v6104095.Peer-Reviewed Original Research
2012
Pre-steady state kinetic analysis of cyclobutyl derivatives of 2′-deoxyadenosine 5′-triphosphate as inhibitors of HIV-1 reverse transcriptase
Kim J, Wang L, Li Y, Becnel K, Frey K, Garforth S, Prasad V, Schinazi R, Liotta D, Anderson K. Pre-steady state kinetic analysis of cyclobutyl derivatives of 2′-deoxyadenosine 5′-triphosphate as inhibitors of HIV-1 reverse transcriptase. Bioorganic & Medicinal Chemistry Letters 2012, 22: 4064-4067. PMID: 22595174, PMCID: PMC3362660, DOI: 10.1016/j.bmcl.2012.04.078.Peer-Reviewed Original ResearchBalancing Antiviral Potency and Host Toxicity: Identifying a Nucleotide Inhibitor with an Optimal Kinetic Phenotype for HIV-1 Reverse Transcriptase
Sohl C, Kasiviswanathan R, Kim J, Pradere U, Schinazi R, Copeland W, Mitsuya H, Baba M, Anderson K. Balancing Antiviral Potency and Host Toxicity: Identifying a Nucleotide Inhibitor with an Optimal Kinetic Phenotype for HIV-1 Reverse Transcriptase. Molecular Pharmacology 2012, 82: 125-133. PMID: 22513406, PMCID: PMC3382833, DOI: 10.1124/mol.112.078758.Peer-Reviewed Original ResearchConceptsNucleoside reverse transcriptase inhibitorsHost toxicityClinical trialsReverse transcriptaseTreatment of HIV infectionMinimal host toxicityUnique toxicity profilePhase II clinical trialReverse transcriptase inhibitorsII clinical trialsHIV-1 reverse transcriptaseWild-typeAntiretroviral efficacyHIV infectionToxicity profileTranscriptase inhibitorsHIV-1Molecular mechanismsTreat HIVMechanisms of toxicityMitochondrial toxicityMolecular mechanisms of toxicityAntiviral potencyViral target proteinsThymidine analog
2010
[d4U]-Spacer-[HI-236] double-drug inhibitors of HIV-1 reverse-transcriptase
Younis Y, Hunter R, Muhanji C, Hale I, Singh R, Bailey C, Sullivan T, Anderson K. [d4U]-Spacer-[HI-236] double-drug inhibitors of HIV-1 reverse-transcriptase. Bioorganic & Medicinal Chemistry 2010, 18: 4661-4673. PMID: 20605472, PMCID: PMC2964380, DOI: 10.1016/j.bmc.2010.05.025.Peer-Reviewed Original Research
2004
Relationship between Antiviral Activity and Host Toxicity: Comparison of the Incorporation Efficiencies of 2′,3′-Dideoxy-5-Fluoro-3′-Thiacytidine-Triphosphate Analogs by Human Immunodeficiency Virus Type 1 Reverse Transcriptase and Human Mitochondrial DNA Polymerase
Feng J, Murakami E, Zorca S, Johnson A, Johnson K, Schinazi R, Furman P, Anderson K. Relationship between Antiviral Activity and Host Toxicity: Comparison of the Incorporation Efficiencies of 2′,3′-Dideoxy-5-Fluoro-3′-Thiacytidine-Triphosphate Analogs by Human Immunodeficiency Virus Type 1 Reverse Transcriptase and Human Mitochondrial DNA Polymerase. Antimicrobial Agents And Chemotherapy 2004, 48: 1300-1306. PMID: 15047533, PMCID: PMC375312, DOI: 10.1128/aac.48.4.1300-1306.2004.Peer-Reviewed Original ResearchConceptsHuman mitochondrial DNA polymeraseMitochondrial DNA polymeraseDNA-DNAPolymerase gammaHuman immunodeficiency virusDNA polymerasePrimer-templateHuman mitochondrial DNA polymerase gammaPre-steady-state kinetic analysisMitochondrial DNA polymerase gammaDNA polymerase gammaMolecular mechanism of inhibitionHIV-1Treatment of human immunodeficiency virusExonuclease activityDNA-RNAReverse transcriptaseFood and Drug AdministrationClinical trial studyMolecular mechanismsMechanism of inhibitionHuman immunodeficiency virus type 1 reverse transcriptaseEnzymatic assayImmunodeficiency virusPolymerase
2001
Deoxythioguanosine triphosphate impairs HIV replication: a new mechanism for an old drug
KRYNETSKAIA N, FENG J, KRYNETSKI E, GARCIA J, PANETTA J, ANDERSON K, EVANS W. Deoxythioguanosine triphosphate impairs HIV replication: a new mechanism for an old drug. The FASEB Journal 2001, 15: 1902-1908. PMID: 11532970, DOI: 10.1096/fj.01-0124com.Peer-Reviewed Original ResearchConceptsAnti-retroviral agentsHIV replicationHIV-1 reverse transcriptaseReverse transcriptaseTreatment of HIVHuman lymphocyte culturesDifferent medicationsHost lymphocytesAdditive cytotoxicityHIV-1Old drugsLymphocyte culturesActive metaboliteHuman lymphocytesMinimal toxicityLymphocytesThioguanineSubstantial inhibitionTreatmentInhibitionHIV proteaseEarly stagesMedicationsHIVPatientsMECHANISTIC STUDIES TO UNDERSTAND THE INHIBITION OF WILD TYPE AND MUTANT HIV-1 REVERSE TRANSCRIPTASE BY CARBOVIR-TRIPHOSPHATE
Ray A, Anderson K. MECHANISTIC STUDIES TO UNDERSTAND THE INHIBITION OF WILD TYPE AND MUTANT HIV-1 REVERSE TRANSCRIPTASE BY CARBOVIR-TRIPHOSPHATE. Nucleosides Nucleotides & Nucleic Acids 2001, 20: 1247-1250. PMID: 11562995, DOI: 10.1081/ncn-100002528.Peer-Reviewed Original Research
2000
Mechanism of Inhibition of the Human Immunodeficiency Virus Type 1 Reverse Transcriptase by d4TTP: an Equivalent Incorporation Efficiency Relative to the Natural Substrate dTTP
Vaccaro J, Parnell K, Terezakis S, Anderson K. Mechanism of Inhibition of the Human Immunodeficiency Virus Type 1 Reverse Transcriptase by d4TTP: an Equivalent Incorporation Efficiency Relative to the Natural Substrate dTTP. Antimicrobial Agents And Chemotherapy 2000, 44: 217-221. PMID: 10602755, PMCID: PMC89660, DOI: 10.1128/aac.44.1.217-221.2000.Peer-Reviewed Original ResearchConceptsHIV-1HIV-1 RTHuman immunodeficiency virus type 1Immunodeficiency virus type 1Target human immunodeficiency virus type 1Inhibition of HIV-1 RTNatural substrateVirus type 1Pre-steady-state kinetic analysisNucleoside analogue inhibitorsDNA synthesisRNA-dependent DNA synthesisAIDS patientsPrimer-template complexHuman immunodeficiency virus type 1 reverse transcriptaseNucleoside triphosphate analoguesType 1Mechanism of inhibitionD4TTPIncorporation efficiencyDTTPDNATriphosphate analoguesAnalogue inhibitorsInhibition
1996
HIV-1 Reverse Transcriptase Resistance to Nonnucleoside Inhibitors †
Spence R, Anderson K, Johnson K. HIV-1 Reverse Transcriptase Resistance to Nonnucleoside Inhibitors †. Biochemistry 1996, 35: 1054-1063. PMID: 8547241, DOI: 10.1021/bi952058+.Peer-Reviewed Original ResearchConceptsMutant enzymesPre-steady-state techniquesSingle nucleotide incorporationWild-type complexMaximum incorporation rateNucleotide incorporationEnzyme complexDuplex DNAAffinity 2Cysteine mutationsTwo-step bindingWild-typeConformational changesDecreased affinityEnzymePresence of nevirapineInhibitor resistanceMutationsIncorporation rateY181C mutationWild-type RTReverse transcriptaseHIV-1NevirapineY181C