2021
Patterns of treatment with everolimus exemestane in hormone receptor-positive HER2-negative metastatic breast cancer in the era of targeted therapy
Rozenblit M, Mun S, Soulos P, Adelson K, Pusztai L, Mougalian S. Patterns of treatment with everolimus exemestane in hormone receptor-positive HER2-negative metastatic breast cancer in the era of targeted therapy. Breast Cancer Research 2021, 23: 14. PMID: 33514405, PMCID: PMC7844919, DOI: 10.1186/s13058-021-01394-y.Peer-Reviewed Original ResearchConceptsPrior endocrine therapyEndocrine therapyMetastatic breast cancerEffective treatment optionTreatment optionsBreast cancerMedian treatmentMedian OSEE therapyHormone receptor-positive HER2-negative metastatic breast cancerMultivariable Cox proportional hazards regression analysisHER2-negative metastatic breast cancerPrior treatmentCox proportional hazards regression analysisFirst-line therapy initiationProportional hazards regression analysisPrior treatment optionsLines of therapyProportion of patientsKaplan-Meier methodHazards regression analysisPatterns of treatmentElectronic health record-derived dataClinical trial dataOS benefit
2019
Identification and Validation of a Novel Biologics Target in Triple Negative Breast Cancer
Wali VB, Patwardhan GA, Pelekanou V, Karn T, Cao J, Ocana A, Yan Q, Nelson B, Hatzis C, Pusztai L. Identification and Validation of a Novel Biologics Target in Triple Negative Breast Cancer. Scientific Reports 2019, 9: 14934. PMID: 31624295, PMCID: PMC6797726, DOI: 10.1038/s41598-019-51453-w.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBreastCell Line, TumorCell MembraneCell ProliferationDatasets as TopicDrug DevelopmentFemaleGABA-A Receptor AntagonistsGene Expression ProfilingGene Knockdown TechniquesHumansImmunoconjugatesImmunoglobulin Fab FragmentsMaytansineMiceMolecular Targeted TherapyReceptors, GABA-ATriple Negative Breast NeoplasmsXenograft Model Antitumor AssaysConceptsTriple-negative breast cancerNegative breast cancerTNBC cell growthBreast cancerMDA-MB-468 xenograftsPotential novel therapeutic targetNovel biologic targetsNovel therapeutic targetBreast cancer tissuesReceptors/cellAntibody-drug conjugate (ADC) developmentMost normal tissuesTreatment optionsCell growthTherapeutic targetBiologic targetsNude miceCancer tissuesVivo functional assaysLow expressionNormal tissuesNovel targetCancerSignificant anticancer activityADC developmentPersonalizing Treatment Selection for Breast Cancer
Pusztai L, Yeoh C. Personalizing Treatment Selection for Breast Cancer. 2019, 297-324. DOI: 10.1201/9780429066504-14.Peer-Reviewed Original ResearchBreast cancerTreatment selectionClinical outcomesRisk of recurrenceMultiple treatment optionsParticular clinical outcomesCurrent treatment modalitiesCancer-related deathMore effective treatmentsProbability of benefitBreast cancer researchUnited States FoodSurgical resectionProbability of responseTrastuzumab therapyCommon malignancyTreatment optionsClinicopathologic variablesPatient preferencesSpecific therapyTreatment modalitiesMulti-gene testsDisease outcomeMolecular differencesEffective treatment
2016
miR-34a Silences c-SRC to Attenuate Tumor Growth in Triple-Negative Breast Cancer
Adams BD, Wali VB, Cheng CJ, Inukai S, Booth CJ, Agarwal S, Rimm DL, Győrffy B, Santarpia L, Pusztai L, Saltzman WM, Slack FJ. miR-34a Silences c-SRC to Attenuate Tumor Growth in Triple-Negative Breast Cancer. Cancer Research 2016, 76: 927-939. PMID: 26676753, PMCID: PMC4755913, DOI: 10.1158/0008-5472.can-15-2321.Peer-Reviewed Original ResearchConceptsTriple-negative breast cancerBreast cancerTumor growthMiR-34a replacement therapyTNBC cell linesDifferent TNBC subtypesPromising therapeutic strategyAttenuates tumor growthHuman clinical trialsMiRNA-profiling studiesMiR-34a levelsCell linesPotent antitumorigenic effectsMiR-34a targetsHuman tumor specimensC-SrcReplacement therapyTNBC subtypesAggressive subtypeTreatment optionsClinical trialsDisease progressionEffective therapyPatient outcomesC-Src inhibitor
2015
CCR 20th Anniversary Commentary: Divide and Conquer—Breast Cancer Subtypes and Response to Therapy
Pusztai L, Rouzier R, Symmans WF. CCR 20th Anniversary Commentary: Divide and Conquer—Breast Cancer Subtypes and Response to Therapy. Clinical Cancer Research 2015, 21: 3575-3577. PMID: 26275950, DOI: 10.1158/1078-0432.ccr-14-3121.Peer-Reviewed Original ResearchConceptsBreast cancerPathologic complete response rateTriple-negative breast cancerAdjuvant treatment optionsResidual invasive diseaseComplete response rateHER2-positive cancersDifferent molecular subtypesClin Cancer ResClinical cancer researchAnniversary CommentaryNeoadjuvant therapyTreatment optionsInvasive diseaseClinical trialsMolecular subtypesResponse rateCancer subtypesCancer ResExtent of responseCancerSubtypesTherapyCancer researchChemotherapy
2014
A Targeted Next‐Generation Sequencing Assay Detects a High Frequency of Therapeutically Targetable Alterations in Primary and Metastatic Breast Cancers: Implications for Clinical Practice
Vasan N, Yelensky R, Wang K, Moulder S, Dzimitrowicz H, Avritscher R, Wang B, Wu Y, Cronin MT, Palmer G, Symmans WF, Miller VA, Stephens P, Pusztai L. A Targeted Next‐Generation Sequencing Assay Detects a High Frequency of Therapeutically Targetable Alterations in Primary and Metastatic Breast Cancers: Implications for Clinical Practice. The Oncologist 2014, 19: 453-458. PMID: 24710307, PMCID: PMC4012963, DOI: 10.1634/theoncologist.2013-0377.Peer-Reviewed Original ResearchConceptsBreast cancerGenomic alterationsV-akt murine thymoma viral oncogene homolog 1Stage IV cancerMetastatic breast cancerActionable genomic alterationsPotential treatment optionOncogene homolog 1Primary tumor biopsiesCancer-related genesClinical Laboratory Improvement AmendmentsDependent kinasesMedian sequencing depthGene fusionsSequencing depthBase substitutionsHER2 mutationsHomolog 1Actionable alterationsTargetable alterationsTreatment optionsClinical trialsHER2 amplificationMetastatic cancerTumor biopsies
2012
Use of next-generation sequencing (NGS) to detect high frequency of targetable alterations in primary and metastatic breast cancer (MBC).
Pusztai L, Yelensky R, Wang B, Avritscher R, Symmans W, Lipson D, Palmer G, Moulder S, Stephens P, Wu Y, Cronin M. Use of next-generation sequencing (NGS) to detect high frequency of targetable alterations in primary and metastatic breast cancer (MBC). Journal Of Clinical Oncology 2012, 30: 10559-10559. DOI: 10.1200/jco.2012.30.15_suppl.10559.Peer-Reviewed Original ResearchMetastatic breast cancerClinical trialsNext-generation sequencingNeedle biopsyBreast cancerGenomic alterationsClinical treatment optionsHER2 gene amplificationPatient selection approachAdjuvant therapyTargetable alterationsTreatment optionsPIK3CA mutationsNovel agentsERBB2 alterationsInvestigational drugsTherapeutic implicationsCancer-related genesBiopsyPredictive valueProspective testingNGS profilingDriver mutationsTherapyCancer
2011
P3-17-01: ApoE and Its Receptors (LRP8, VLDLR) Function as Growth Signals for Triple-Negative Breast Cancer and Represent a Novel Therapeutic Target.
Shiang C, Qi Y, Wang B, Broom B, Pusztai L. P3-17-01: ApoE and Its Receptors (LRP8, VLDLR) Function as Growth Signals for Triple-Negative Breast Cancer and Represent a Novel Therapeutic Target. Cancer Research 2011, 71: p3-17-01-p3-17-01. DOI: 10.1158/0008-5472.sabcs11-p3-17-01.Peer-Reviewed Original ResearchTriple-negative breast cancerER-negative cellsBreast cancerHuman epidermal growth factor 2 receptorReceptor systemAbstract Triple-negative breast cancerStimulatory effectCell linesEarly-onset breast cancerHuman triple-negative breast cancerER-negative cell linesExpression of estrogenReceptor-positive cancersER-positive cellsOnset breast cancerNovel therapeutic targetBreast cancer cell linesBreast cancer tissuesInflammatory signaling pathwaysMAPK/ERK pathwayPreferential growth inhibitionApoE4 expressionCancer cell linesTreatment optionsGrowth factor 2 receptor