2007
Jagunal is required for reorganizing the endoplasmic reticulum during Drosophila oogenesis
Lee S, Cooley L. Jagunal is required for reorganizing the endoplasmic reticulum during Drosophila oogenesis. Journal Of Cell Biology 2007, 176: 941-952. PMID: 17389229, PMCID: PMC2064080, DOI: 10.1083/jcb.200701048.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceCaenorhabditis elegansCell DifferentiationConserved SequenceCytoplasmic StreamingDrosophila melanogasterDrosophila ProteinsEndoplasmic ReticulumExocytosisGolgi ApparatusMembrane ProteinsMicroscopy, Electron, TransmissionMolecular Sequence DataOocytesOogenesisProtein TransportSequence Homology, Amino AcidSequence Homology, Nucleic AcidTransport VesiclesZebrafishConceptsVesicular trafficMembrane trafficEndoplasmic reticulumER reorganizationER membrane proteinsDrosophila melanogaster oocytesDrosophila oogenesisMembrane proteinsOocyte endoplasmic reticulumLateral membranesER clusteringReticulumImportant mechanismVitellogenesisOocytesOogenesisEndocytosisReorganizationProteinMembraneCells
2005
Drosophila myosin V is required for larval development and spermatid individualization
Mermall V, Bonafé N, Jones L, Sellers JR, Cooley L, Mooseker MS. Drosophila myosin V is required for larval development and spermatid individualization. Developmental Biology 2005, 286: 238-255. PMID: 16126191, DOI: 10.1016/j.ydbio.2005.07.028.Peer-Reviewed Original ResearchConceptsInvestment conesLarval developmentClass V myosinsIndividualization complexSpermatid individualizationCytological defectsTruncation alleleVesicular trafficRNA transportActin structuresLarval tissuesMutant animalsMature spermSperm nucleiMyoVSpermatid maturationMolecular motorsMyosin VMechanochemical couplingDetectable defectsV geneMicrotubulesIndividual membranesActinSpermatogenesis
2002
SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila
Zallen JA, Cohen Y, Hudson AM, Cooley L, Wieschaus E, Schejter ED. SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. Journal Of Cell Biology 2002, 156: 689-701. PMID: 11854309, PMCID: PMC2174092, DOI: 10.1083/jcb.200109057.Peer-Reviewed Original ResearchMeSH KeywordsActin-Related Protein 2Actin-Related Protein 3ActinsAmino Acid SequenceAnimalsAxonsBase SequenceBlastodermBrainCytoplasmCytoskeletal ProteinsDNA, ComplementaryDrosophilaDrosophila ProteinsGenes, InsectHumansInsect ProteinsMicrofilament ProteinsMolecular Sequence DataMorphogenesisMutagenesisOogenesisOvumProteinsSequence Homology, Amino AcidWiskott-Aldrich Syndrome ProteinConceptsWiskott-Aldrich syndrome proteinArp2/3 complexAdult eye morphologyScar/WAVECell fate decisionsActin-rich structuresCell biological eventsCortical filamentous actinCell morphologyDrosophila developmentMultiple cell typesNormal cell morphologySCAR homologueFate decisionsSyndrome proteinActin structuresFilamentous actinActin polymerizationCell shapeMorphological eventsCytoplasmic organizationEye morphologyBiological eventsCell typesDevelopmental requirements
1993
Kelch encodes a component of intercellular bridges in Drosophila egg chambers
Xue F, Cooley L. Kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 1993, 72: 681-693. PMID: 8453663, DOI: 10.1016/0092-8674(93)90397-9.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceBiological TransportCarrier ProteinsConserved SequenceDrosophilaDrosophila ProteinsGerm CellsIntercellular JunctionsMicrofilament ProteinsMolecular Sequence DataOogenesisOpen Reading FramesRepetitive Sequences, Nucleic AcidSequence Homology, Amino AcidConceptsRing canalsIntercellular bridgesFemale-sterile mutationsDrosophila egg chamberUGA stop codonOpen reading frameFlow of cytoplasmSterile mutationsEgg chambersLong proteinShorter proteinCytoplasm transportORF1 productUGA codonReading frameKelch geneUnusual transcriptsNurse cellsProtein productsStop codonKelchOocyte maturationCodonORF1Cytoplasm
1992
chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis
Cooley L, Verheyen E, Ayers K. chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 1992, 69: 173-184. PMID: 1339308, DOI: 10.1016/0092-8674(92)90128-y.Peer-Reviewed Original ResearchConceptsCytoplasmic actin networksNurse cellsDrosophila oogenesisEgg chambersCytoplasm transportActin networkPolyploid nurse cellsNurse cell nucleiFlow of cytoplasmMutant phenotypeCDNA clonesProtein 40Cytoplasmic contentsAcanthamoeba profilinCell nucleiProfilinNuclear positionOogenesisGenesChickadeesOocytesCellsYeastCytoplasmClones
1986
The additional guanylate at the 5' terminus of Escherichia coli tRNAHis is the result of unusual processing by RNase P.
Orellana O, Cooley L, Söll D. The additional guanylate at the 5' terminus of Escherichia coli tRNAHis is the result of unusual processing by RNase P. Molecular And Cellular Biology 1986, 6: 525-529. PMID: 3023854, PMCID: PMC367542, DOI: 10.1128/mcb.6.2.525.Peer-Reviewed Original Research
1985
Processing of precursor tRNAs in Drosophila. Processing of the 3‘ end involves an endonucleolytic cleavage and occurs after 5‘ end maturation.
Frendewey D, Dingermann T, Cooley L, Söll D. Processing of precursor tRNAs in Drosophila. Processing of the 3‘ end involves an endonucleolytic cleavage and occurs after 5‘ end maturation. Journal Of Biological Chemistry 1985, 260: 449-454. PMID: 3843841, DOI: 10.1016/s0021-9258(18)89752-6.Peer-Reviewed Original Research
1984
Transcription factor binding is limited by the 5'-flanking regions of a Drosophila tRNAHis gene and a tRNAHis pseudogene.
Cooley L, Schaack J, Burke DJ, Thomas B, Söll D. Transcription factor binding is limited by the 5'-flanking regions of a Drosophila tRNAHis gene and a tRNAHis pseudogene. Molecular And Cellular Biology 1984, 4: 2714-2722. PMID: 6570190, PMCID: PMC369281, DOI: 10.1128/mcb.4.12.2714.Peer-Reviewed Original ResearchConceptsDrosophila Kc cell extractHeLa cell extractsCell extractsReal genesStable complex formationControl regionDeletion analysisStable transcription complex formationRecombinant clonesDrosophila tRNAArg geneTRNA gene clusterTranscription complex formationBona fide genesInternal control regionTranscription factor bindingSame DNA strandComplex formationTranscription control regionsConsecutive base pairsTRNAHis geneTRNAArg geneFide genesGene clusterTranscription factorsFactor bindingThe extent of a eukaryotic tRNA gene. 5‘- and 3‘-flanking sequence dependence for transcription and stable complex formation.
Schaack J, Sharp S, Dingermann T, Burke DJ, Cooley L, Söll D. The extent of a eukaryotic tRNA gene. 5‘- and 3‘-flanking sequence dependence for transcription and stable complex formation. Journal Of Biological Chemistry 1984, 259: 1461-1467. PMID: 6693417, DOI: 10.1016/s0021-9258(17)43429-6.Peer-Reviewed Original ResearchConceptsStable complex formationBase pairsDrosophila Kc cell extractSequence requirementsCell extractsEukaryotic tRNA genesStable transcription complexesHeLa cell extractsTRNA genesComplex formationTranscription complexArg genesEfficient transcriptionTranscription assaysTranscription propertiesCell-free extractsTranscriptionHomologous systemGenesSequenceSequence dependenceCellular sourceExtractAssaysPairs
1983
Organization and Expression of tRNA Genes in Drosophila Melanogaster
Sharp S, Cooley L, DeFranco D, Dingermann T, Söll D. Organization and Expression of tRNA Genes in Drosophila Melanogaster. Recent Results In Cancer Research 1983, 84: 1-14. PMID: 6405456, DOI: 10.1007/978-3-642-81947-6_1.Peer-Reviewed Original ResearchConceptsProtein-synthesizing machineryCorrect amino acidCognate aminoacyl-tRNA synthetasesAminoacyl-tRNA synthetasesTransfer RNA moleculesSpecific recognition featuresStructure-function relationshipsTRNA genesDrosophila melanogasterTRNA speciesRNA moleculesGeneral structural featuresPolypeptide chainTRNAAmino acidsRegulatory processesUseful moleculesFunctional characteristicsStructural featuresIntegral componentRecognition featuresMelanogasterEfficient recognitionSynthetasesRibosomes
1982
Nonsense suppression in Schizosaccharomyces pombe: The S. pombe Sup3-e tRNASerUGA gene is active in S. cerevisiae
Hottinger H, Pearson D, Yamao F, Gamulin V, Colley L, Cooper T, Söll D. Nonsense suppression in Schizosaccharomyces pombe: The S. pombe Sup3-e tRNASerUGA gene is active in S. cerevisiae. Molecular Genetics And Genomics 1982, 188: 219-224. PMID: 6818425, DOI: 10.1007/bf00332678.Peer-Reviewed Original ResearchPost-transcriptional nucleotide addition is responsible for the formation of the 5' terminus of histidine tRNA.
Cooley L, Appel B, Söll D. Post-transcriptional nucleotide addition is responsible for the formation of the 5' terminus of histidine tRNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1982, 79: 6475-6479. PMID: 6292903, PMCID: PMC347149, DOI: 10.1073/pnas.79.21.6475.Peer-Reviewed Original ResearchConceptsMature tRNAHistidine tRNAPrimary transcriptHistidine tRNA genesGuanylate residuePost-transcriptional additionDrosophila Kc cellsTRNA genesDrosophila melanogasterSchizosaccharomyces pombeTRNAs resultsRNA speciesRNase PEukaryotic mRNAsKc cellsRNA precursorsTRNASequence analysisNucleotide additionAdditional nucleotidesPhosphodiester bondGenesNucleotidesMaturation schemeTranscriptsArrangement of the ribosomal RNA genes in Schizosaccharomyces pombe
Barnitz J, Cramer J, Rownd R, Cooley L, Söll D. Arrangement of the ribosomal RNA genes in Schizosaccharomyces pombe. FEBS Letters 1982, 143: 129-132. PMID: 6288447, DOI: 10.1016/0014-5793(82)80288-3.Peer-Reviewed Original Research