2022
Bempegaldesleukin plus nivolumab in first-line renal cell carcinoma: results from the PIVOT-02 study
Tannir NM, Cho DC, Diab A, Sznol M, Bilen MA, Balar AV, Grignani G, Puente E, Tang L, Chien D, Hoch U, Choudhury A, Yu D, Currie SL, Tagliaferri MA, Zalevsky J, Siefker-Radtke AO, Hurwitz ME. Bempegaldesleukin plus nivolumab in first-line renal cell carcinoma: results from the PIVOT-02 study. Journal For ImmunoTherapy Of Cancer 2022, 10: e004419. PMID: 35444058, PMCID: PMC9021810, DOI: 10.1136/jitc-2021-004419.Peer-Reviewed Original ResearchConceptsTreatment-related adverse eventsRenal cell carcinomaProgression-free survivalAdvanced clear cell renal cell carcinomaClear cell renal cell carcinomaFirst-line therapyOverall survivalCell carcinomaGrade 3/4 treatment-related adverse eventsSingle-arm phase 1/2 studyMedian progression-free survivalMedian overall survivalObjective response ratePhase 1/2 studyCent of patientsPreliminary antitumor activitySingle-arm designAdverse eventsComplete responseBaseline biomarkersTreatment optionsExploratory biomarkersRCC cohortBempegaldesleukinNivolumab
2020
Survival after checkpoint inhibitors for metastatic acral, mucosal and uveal melanoma
Klemen ND, Wang M, Rubinstein JC, Olino K, Clune J, Ariyan S, Cha C, Weiss SA, Kluger HM, Sznol M. Survival after checkpoint inhibitors for metastatic acral, mucosal and uveal melanoma. Journal For ImmunoTherapy Of Cancer 2020, 8: e000341. PMID: 32209601, PMCID: PMC7103823, DOI: 10.1136/jitc-2019-000341.Peer-Reviewed Original ResearchConceptsCheckpoint inhibitorsOverall survivalMetastatic melanomaPrimary tumorLocal therapyCutaneous melanomaAnti-PD-1 antibodyAggressive multidisciplinary approachCutaneous primary tumorPrimary tumor histologyMedian overall survivalSingle institutional experienceRare melanoma subtypeMedian OSMetastatic diseaseProgressive diseaseAcral skinComplete responsePD-1PD-L1Uveal tractTumor histologyCombination therapyCTLA-4Longer survival
2019
Patterns of failure after immunotherapy with checkpoint inhibitors predict durable progression-free survival after local therapy for metastatic melanoma
Klemen ND, Wang M, Feingold PL, Cooper K, Pavri SN, Han D, Detterbeck FC, Boffa DJ, Khan SA, Olino K, Clune J, Ariyan S, Salem RR, Weiss SA, Kluger HM, Sznol M, Cha C. Patterns of failure after immunotherapy with checkpoint inhibitors predict durable progression-free survival after local therapy for metastatic melanoma. Journal For ImmunoTherapy Of Cancer 2019, 7: 196. PMID: 31340861, PMCID: PMC6657062, DOI: 10.1186/s40425-019-0672-3.Peer-Reviewed Original ResearchConceptsThree-year progression-free survivalProgression-free survivalDisease-specific survivalFive-year disease-specific survivalPatterns of failureDurable progression-free survivalLocal therapyStereotactic body radiotherapyMetastatic melanomaNew metastasesPatient selectionIndependent radiological reviewOngoing complete responseResultsFour hundred twentyEvidence of diseaseCNS metastasisCPI treatmentImmunotherapy failureCheckpoint inhibitorsMost patientsProgressive diseaseRadiological reviewComplete responsePD-1PD-L1
2017
Long-Term Outcomes in Patients With BRAF V600–Mutant Metastatic Melanoma Who Received Dabrafenib Combined With Trametinib
Long GV, Eroglu Z, Infante J, Patel S, Daud A, Johnson DB, Gonzalez R, Kefford R, Hamid O, Schuchter L, Cebon J, Sharfman W, McWilliams R, Sznol M, Redhu S, Gasal E, Mookerjee B, Weber J, Flaherty KT. Long-Term Outcomes in Patients With BRAF V600–Mutant Metastatic Melanoma Who Received Dabrafenib Combined With Trametinib. Journal Of Clinical Oncology 2017, 36: jco.2017.74.102. PMID: 28991513, PMCID: PMC10466457, DOI: 10.1200/jco.2017.74.1025.Peer-Reviewed Original ResearchConceptsBRAF V600-mutant metastatic melanomaProgression-free survivalNormal lactate dehydrogenaseMetastatic melanomaD monotherapyCombination therapyMEK inhibitor combination therapyInhibitor-naive patientsLong-term OSTrametinib combination therapyNew safety signalsBRAF inhibitor dabrafenibInhibitor combination therapyLactate dehydrogenaseIncreased OSC. PatientsOverall survivalComplete responseAdditional patientsTerm outcomesSafety signalsLandmark analysisSafety outcomesOrgan sitesPatientsNuclear IRF-1 expression as a mechanism to assess “Capability” to express PD-L1 and response to PD-1 therapy in metastatic melanoma
Smithy JW, Moore LM, Pelekanou V, Rehman J, Gaule P, Wong PF, Neumeister VM, Sznol M, Kluger HM, Rimm DL. Nuclear IRF-1 expression as a mechanism to assess “Capability” to express PD-L1 and response to PD-1 therapy in metastatic melanoma. Journal For ImmunoTherapy Of Cancer 2017, 5: 25. PMID: 28331615, PMCID: PMC5359951, DOI: 10.1186/s40425-017-0229-2.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntibodies, MonoclonalAntibodies, Monoclonal, HumanizedB7-H1 AntigenBiomarkers, PharmacologicalDisease-Free SurvivalFemaleGene Expression Regulation, NeoplasticHumansImmunotherapyInterferon Regulatory Factor-1IpilimumabMaleMelanomaMiddle AgedNeoplasm MetastasisNeoplasms, Second PrimaryNivolumabProgrammed Cell Death 1 ReceptorConceptsProgression-free survivalObjective radiographic responsePD-L1 expressionPD-L1IRF-1 expressionMetastatic melanomaAnti-PD-1 therapyCombination ipilimumab/nivolumabHigh PD-L1 expressionAnti-PD-1 immunotherapyYale-New Haven HospitalIpilimumab/nivolumabPD-1 therapyPR/CRPre-treatment formalinRECIST v1.1 criteriaDeath ligand 1Valuable predictive biomarkerMajor unmet needNew Haven HospitalInterferon regulatory factor 1Combination ipilimumabProgressive diseaseRadiographic responseComplete response
2012
Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer. New England Journal Of Medicine 2012, 366: 2443-2454. PMID: 22658127, PMCID: PMC3544539, DOI: 10.1056/nejmoa1200690.Peer-Reviewed Original ResearchConceptsAnti-PD-1 antibodyCell lung cancerRenal cell cancerObjective responseLung cancerAdverse eventsPD-L1Drug-related adverse eventsPD-1 ligand expressionCastration-resistant prostate cancerImmune-related causesPretreatment tumor specimensAdverse event profilePD-L1 expressionPD-1-PDCumulative response rateBMS-936558Immune correlatesL1 pathwayAdvanced melanomaComplete responseDeath-1PD-1Negative tumorsPositive tumorsIpilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial
Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I, Wolchok JD, Clark JI, Sznol M, Logan TF, Richards J, Michener T, Balogh A, Heller KN, Hodi FS. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. The Lancet Oncology 2012, 13: 459-465. PMID: 22456429, DOI: 10.1016/s1470-2045(12)70090-6.Peer-Reviewed Original ResearchConceptsBrain metastasesCohort ACohort BSerum aspartate aminotransferaseDisease controlIntravenous ipilimumabAdverse eventsAdvanced melanomaCohort B.Common grade 3 adverse eventsAspartate aminotransferaseGrade 3 adverse eventsCommon grade 3Drug-related complicationsPhase 2 trialProportion of patientsUnexpected toxic effectsBristol-Myers SquibbStable diseaseCorticosteroid treatmentPrimary endpointStable dosePartial responseWeek 24Complete response
2005
Phase I Study of Cloretazine (VNP40101M), a Novel Sulfonylhydrazine Alkylating Agent, Combined with Cytarabine in Patients with Refractory Leukemia
Giles F, Verstovsek S, Thomas D, Gerson S, Cortes J, Faderl S, Ferrajoli A, Ravandi F, Kornblau S, Garcia-Manero G, Jabbour E, O'Brien S, Karsten V, Cahill A, Yee K, Albitar M, Sznol M, Kantarjian H. Phase I Study of Cloretazine (VNP40101M), a Novel Sulfonylhydrazine Alkylating Agent, Combined with Cytarabine in Patients with Refractory Leukemia. Clinical Cancer Research 2005, 11: 7817-7824. PMID: 16278404, DOI: 10.1158/1078-0432.ccr-05-1070.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAlkylating AgentsAntineoplastic AgentsAntineoplastic Combined Chemotherapy ProtocolsBase Pair MismatchCohort StudiesCytarabineDisease ProgressionDNADNA RepairFemaleHumansHydrazinesLeukemiaLeukocytes, MononuclearMaleMiddle AgedModels, ChemicalO(6)-Methylguanine-DNA MethyltransferaseSulfonamidesTime FactorsConceptsContinuous infusionAGT activityAra-C regimenSignificant antileukemia activityPredictors of responseAcute myeloid leukemiaCourse of treatmentGm/Significant antileukemic activityEvaluable patientsNovel sulfonylhydrazineRefractory diseaseRefractory leukemiaStarting doseComplete responseDose schedulePatient subsetsMyeloid leukemiaPatientsAlkylguanine-DNA alkyltransferaseDose levelsDay 2Antileukemia activityAntileukemic activityCloretazine
2004
A phase I trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone in combination with gemcitabine for patients with advanced cancer
Yen Y, Margolin K, Doroshow J, Fishman M, Johnson B, Clairmont C, Sullivan D, Sznol M. A phase I trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone in combination with gemcitabine for patients with advanced cancer. Cancer Chemotherapy And Pharmacology 2004, 54: 331-342. PMID: 15148626, DOI: 10.1007/s00280-004-0821-2.Peer-Reviewed Original ResearchConceptsPhase I trialI trialAdvanced cancerToxicity profileDiffuse coronary artery diseaseST-T wave changesGemcitabine plasma concentrationsLarge liver metastasesNon-specific ST-T wave changesPhase II trialCoronary artery diseaseAsymptomatic myocardial infarctionMild QT prolongationCytotoxicity of gemcitabineEvaluable patientsGemcitabine 1000Gemcitabine doseAcute hypotensionII trialPartial responseArtery diseaseCardiovascular reserveComplete responseLiver metastasesAcute symptoms