2024
Allosteric activation of the co-receptor BAK1 by the EFR receptor kinase initiates immune signaling
Mühlenbeck H, Tsutsui Y, Lemmon M, Bender K, Zipfel C. Allosteric activation of the co-receptor BAK1 by the EFR receptor kinase initiates immune signaling. ELife 2024, 12: rp92110. PMID: 39028038, PMCID: PMC11259431, DOI: 10.7554/elife.92110.Peer-Reviewed Original ResearchConceptsKinase domainReceptor kinasePhosphorylation-dependent conformational changesActive conformationIntragenic suppressor mutationsCo-receptor BAK1Kinase-dead variantPlant receptor kinasesProtein kinase domainLeucine-rich repeatNon-catalytic functionsIntracellular kinase domainCo-receptorLRR-RKsSuppressor mutationsTrans-phosphorylationPseudokinase domainActivation loopActive kinaseAllosteric activationTransmembrane signalingBAK1Immune signalingRegulate signalingSignaling activity
2021
Phosphatidylserine binding directly regulates TIM-3 function
Smith CM, Li A, Krishnamurthy N, Lemmon MA. Phosphatidylserine binding directly regulates TIM-3 function. Biochemical Journal 2021, 478: 3331-3349. PMID: 34435619, PMCID: PMC8454703, DOI: 10.1042/bcj20210425.Peer-Reviewed Original ResearchConceptsTim-3T cell receptorTherapeutic targetCo-signaling receptorsTim-3 functionTim-3 ligandTim-3 signalingCo-inhibitory receptorsCo-stimulatory receptorsImmune modulation approachesIL-2 secretionPotential therapeutic targetNF-κB signalingImportant therapeutic targetPD-1Jurkat cellsCultured Jurkat cellsT cellsCell receptorTCR stimulationReceptorsImportance of phosphatidylserineDifferent studiesCellsSignaling
2018
Regulation of Kinase Activity in the Caenorhabditis elegans EGF Receptor, LET-23
Liu L, Thaker TM, Freed DM, Frazier N, Malhotra K, Lemmon MA, Jura N. Regulation of Kinase Activity in the Caenorhabditis elegans EGF Receptor, LET-23. Structure 2018, 26: 270-281.e4. PMID: 29358026, PMCID: PMC5803352, DOI: 10.1016/j.str.2017.12.012.Peer-Reviewed Original ResearchConceptsLET-23Allosteric activatorEGF receptorAllosteric activation mechanismFull-length receptorCaenorhabditis elegansActive kinaseKinase domainAllosteric activationKinase activityReceptor dimersEGFR kinaseKinaseHuman EGFRDistinct rolesHuman counterpartActivation mechanismActivatorReceptorsElegansHeterodimerizationMutationsCrystal structureRegulationEGFR
2016
The Dark Side of Cell Signaling: Positive Roles for Negative Regulators
Lemmon MA, Freed DM, Schlessinger J, Kiyatkin A. The Dark Side of Cell Signaling: Positive Roles for Negative Regulators. Cell 2016, 164: 1172-1184. PMID: 26967284, PMCID: PMC4830124, DOI: 10.1016/j.cell.2016.02.047.Peer-Reviewed Original ResearchConceptsCell signalingNegative regulatorGTP/GDP cycleNew cellular statesKinase/phosphataseCell surface receptorsCellular statesSignal terminationSwitch-like transitionsSuch regulatorsReceptor internalizationGDP cycleReceptor signalingSignal activationKinetic proofreadingSignalingRegulatorOnly negative effectNegative signalsPositive roleImportant roleNegative effectsProofreadingPhosphataseInternalizationThe ALK/ROS1 Inhibitor PF-06463922 Overcomes Primary Resistance to Crizotinib in ALK-Driven Neuroblastoma
Infarinato NR, Park JH, Krytska K, Ryles HT, Sano R, Szigety KM, Li Y, Zou HY, Lee NV, Smeal T, Lemmon MA, Mossé YP. The ALK/ROS1 Inhibitor PF-06463922 Overcomes Primary Resistance to Crizotinib in ALK-Driven Neuroblastoma. Cancer Discovery 2016, 6: 96-107. PMID: 26554404, PMCID: PMC4707106, DOI: 10.1158/2159-8290.cd-15-1056.Peer-Reviewed Original ResearchMeSH KeywordsAminopyridinesAnaplastic Lymphoma KinaseAnimalsCell Line, TumorCrizotinibDrug Resistance, NeoplasmHumansLactamsLactams, MacrocyclicMiceMutationNeuroblastomaPhosphorylationProtein Kinase InhibitorsPyrazolesPyridinesReceptor Protein-Tyrosine KinasesTreatment OutcomeXenograft Model Antitumor AssaysConceptsAnaplastic lymphoma kinaseCrizotinib resistancePF-06463922ALK variantsTreatment of patientsALK inhibitor crizotinibPatient-derived xenograftsXenograft mouse modelPreclinical rationaleClinical obstacleNeuroblastoma modelClinical trialsTumor regressionPrimary resistanceInhibitor crizotinibXenograft tumorsMouse modelXenograft modelLymphoma kinaseNeuroblastomaCrizotinibHigh potencyF1174LVivo dataImproved potency
2012
Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma
Carpenter EL, Haglund EA, Mace EM, Deng D, Martinez D, Wood AC, Chow AK, Weiser DA, Belcastro LT, Winter C, Bresler SC, Asgharzadeh S, Seeger R, Zhao H, Guo R, Christensen J, Orange J, Pawel B, Lemmon M, Mossé Y. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene 2012, 31: 4859-4867. PMID: 22266870, PMCID: PMC3730824, DOI: 10.1038/onc.2011.647.Peer-Reviewed Original ResearchMeSH KeywordsAnaplastic Lymphoma KinaseAntibodies, MonoclonalAntigens, NeoplasmCell DeathCell Line, TumorCell ProliferationCrizotinibHumansMutationNeuroblastomaPhosphorylationProtein Kinase InhibitorsProtein-Tyrosine KinasesProto-Oncogene Proteins c-metPyrazolesPyridinesReceptor Protein-Tyrosine KinasesSignal TransductionConceptsAnaplastic lymphoma kinaseLymphoma kinaseHuman neuroblastomaSmall molecule tyrosine kinase inhibitorsAntibody-dependent cellular cytotoxicityReceptor tyrosine kinasesDevastating pediatric cancerSympathetic nervous systemALK inhibitor crizotinibComplementary therapeutic approachALK-positive tumorsPromising therapeutic strategyTyrosine kinase inhibitorsAntibody-induced growth inhibitionCell linesTractable therapeutic targetWild-type ALKTyrosine kinaseALK aberrationsNeuroblastoma patientsLung cancerALK mutationsInhibitor crizotinibCellular cytotoxicityALK antibody
2011
Differential Inhibitor Sensitivity of Anaplastic Lymphoma Kinase Variants Found in Neuroblastoma
Bresler SC, Wood AC, Haglund EA, Courtright J, Belcastro LT, Plegaria JS, Cole K, Toporovskaya Y, Zhao H, Carpenter EL, Christensen JG, Maris JM, Lemmon MA, Mossé YP. Differential Inhibitor Sensitivity of Anaplastic Lymphoma Kinase Variants Found in Neuroblastoma. Science Translational Medicine 2011, 3: 108ra114. PMID: 22072639, PMCID: PMC3319004, DOI: 10.1126/scitranslmed.3002950.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnaplastic Lymphoma KinaseCell Line, TumorCrizotinibDrug Resistance, NeoplasmGenome, HumanHumansKineticsModels, MolecularMutant ProteinsMutationNeuroblastomaPhosphorylationProtein Kinase InhibitorsProtein Structure, TertiaryPyrazolesPyridinesReceptor Protein-Tyrosine Kinases
2010
ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation
Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 7692-7697. PMID: 20351256, PMCID: PMC2867849, DOI: 10.1073/pnas.1002753107.Peer-Reviewed Original Research
2009
The Juxtamembrane Region of the EGF Receptor Functions as an Activation Domain
Brewer M, Choi SH, Alvarado D, Moravcevic K, Pozzi A, Lemmon MA, Carpenter G. The Juxtamembrane Region of the EGF Receptor Functions as an Activation Domain. Molecular Cell 2009, 34: 641-651. PMID: 19560417, PMCID: PMC2719887, DOI: 10.1016/j.molcel.2009.04.034.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesCarcinoma, Non-Small-Cell LungCell LineCell Transformation, NeoplasticChlorocebus aethiopsCOS CellsCrystallography, X-RayDimerizationErbB ReceptorsHumansMiceModels, MolecularMutagenesis, Site-DirectedMutationNIH 3T3 CellsPhosphorylationProtein Structure, TertiaryTyrosineConceptsEpidermal growth factor receptorActivation domainJuxtamembrane regionJM regionGrowth factor receptorIntracellular juxtamembrane regionEGF receptor functionAlanine-scanning mutagenesisFactor receptorTyrosine kinase activationAsymmetric dimerTyrosine kinase domainAutoinhibitory interactionsKinase domainCellular transformationScanning mutagenesisKinase activationEGFR activationC-lobeXenograft assayCancer mutationsC-terminal 19 residuesCrystallographic approachReceptor functionExtensive contacts
2006
EGF-independent activation of cell-surface EGF receptors harboring mutations found in gefitinib-sensitive lung cancer
Choi SH, Mendrola JM, Lemmon MA. EGF-independent activation of cell-surface EGF receptors harboring mutations found in gefitinib-sensitive lung cancer. Oncogene 2006, 26: 1567-1576. PMID: 16953218, DOI: 10.1038/sj.onc.1209957.Peer-Reviewed Original ResearchConceptsEpidermal growth factor receptorTyrosine kinase domainKinase domainEGF receptorRecent structural studiesSomatic mutationsCell surface EGF receptorsTyrosine kinase activityAbsence of EGFAutoinhibitory interactionsActivation loopErbB family membersGrowth factor receptorTyrosine phosphorylationEGFR tyrosine kinase domainKinase activityNull backgroundMechanistic basisOncogenic mutationsBiochemical propertiesCell surfaceCell lung carcinoma patientsFactor receptorMutationsLung carcinoma patients
2004
ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface
Berger MB, Mendrola JM, Lemmon MA. ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface. FEBS Letters 2004, 569: 332-336. PMID: 15225657, DOI: 10.1016/j.febslet.2004.06.014.Peer-Reviewed Original Research
1997
Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation
Burke C, Lemmon M, Coren B, Engelman D, Stern D. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene 1997, 14: 687-696. PMID: 9038376, DOI: 10.1038/sj.onc.1200873.Peer-Reviewed Original ResearchConceptsReceptor tyrosine kinasesTransmembrane domainEpidermal growth factor receptorSignal transductionWild-type domainSecond-site mutationsPosition 664Dimerization domainGrowth factor receptorTyrosine kinaseGlycophorin AFactor receptorValine substitutionDimerizationMutationsTransductionGlutamic acidDomainWeak dimerizationMutantsKinaseSignalingProteinEGFChimeras