2023
PD-1 instructs a tumor-suppressive metabolic program that restricts glycolysis and restrains AP-1 activity in T cell lymphoma
Wartewig T, Daniels J, Schulz M, Hameister E, Joshi A, Park J, Morrish E, Venkatasubramani A, Cernilogar F, van Heijster F, Hundshammer C, Schneider H, Konstantinidis F, Gabler J, Klement C, Kurniawan H, Law C, Lee Y, Choi S, Guitart J, Forne I, Giustinani J, Müschen M, Jain S, Weinstock D, Rad R, Ortonne N, Schilling F, Schotta G, Imhof A, Brenner D, Choi J, Ruland J. PD-1 instructs a tumor-suppressive metabolic program that restricts glycolysis and restrains AP-1 activity in T cell lymphoma. Nature Cancer 2023, 4: 1508-1525. PMID: 37723306, PMCID: PMC10597841, DOI: 10.1038/s43018-023-00635-7.Peer-Reviewed Original ResearchConceptsPD-1T-NHLAP-1 activityT-cell non-Hodgkin lymphomaImmune checkpoint receptor PD-1Cell non-Hodgkin lymphomaCheckpoint receptor PD-1Receptor PD-1Non-Hodgkin lymphomaT-cell lymphomaT-cell malignanciesPrimary patient samplesTractable mouse modelAdvanced diseaseInferior prognosisProtein-1 transcription factorT cellsCell lymphomaMouse modelCell malignanciesATP citrate lyase activityACLY inhibitionPatient samplesTumor suppressive mechanismKey tumor suppressorPhosphorylation stabilized TET1 acts as an oncoprotein and therapeutic target in B cell acute lymphoblastic leukemia
Chen Z, Zhou K, Xue J, Small A, Xiao G, Nguyen L, Zhang Z, Prince E, Weng H, Huang H, Zhao Z, Qing Y, Shen C, Li W, Han L, Tan B, Su R, Qin H, Li Y, Wu D, Gu Z, Ngo V, He X, Chao J, Leung K, Wang K, Dong L, Qin X, Cai Z, Sheng Y, Chen Y, Wu X, Zhang B, Shi Y, Marcucci G, Qian Z, Xu M, Müschen M, Chen J, Deng X. Phosphorylation stabilized TET1 acts as an oncoprotein and therapeutic target in B cell acute lymphoblastic leukemia. Science Translational Medicine 2023, 15: eabq8513. PMID: 36989375, PMCID: PMC11163962, DOI: 10.1126/scitranslmed.abq8513.Peer-Reviewed Original ResearchConceptsB-cell acute lymphoblastic leukemiaCell acute lymphoblastic leukemiaAcute lymphoblastic leukemiaB-ALLRefractory/Oncogenic roleLymphoblastic leukemiaProtein kinase C epsilonOverall survival rateNormal precursor B cellsCrucial oncogenic rolePrecursor B cellsAdult patientsPDX modelsPharmacological targetingTherapeutic targetB cellsImproved therapiesSurvival rateLeukemia progressionTherapeutic potentialOverexpression of TET1TET1 proteinATM serine/threonine kinaseLeukemiaIsoform-specific knockdown of long and intermediate prolactin receptors interferes with evolution of B-cell neoplasms
Taghi Khani A, Kumar A, Sanchez Ortiz A, Radecki K, Aramburo S, Lee S, Hu Z, Damirchi B, Lorenson M, Wu X, Gu Z, Stohl W, Sanz I, Meffre E, Müschen M, Forman S, Koff J, Walker A, Swaminathan S. Isoform-specific knockdown of long and intermediate prolactin receptors interferes with evolution of B-cell neoplasms. Communications Biology 2023, 6: 295. PMID: 36941341, PMCID: PMC10027679, DOI: 10.1038/s42003-023-04667-8.Peer-Reviewed Original ResearchConceptsHuman B-cell malignanciesB-cell malignanciesB-cell neoplasmsB cellsPathogenic B cell subsetsPRL receptorsSLE-prone miceSystemic lupus erythematosusB cell numbersB cell subsetsB cell viabilityNormal B cellsExpression of Bcl2B cell survivalB-cell transformationLupus erythematosusLymphoproliferative diseaseAutocrine prolactinMouse modelPRLR isoformsMalignancyProlactinBCL2 expressionProlactin receptorIsoform-specific knockdownCell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin beta receptor signaling
Feng X, Sun R, Lee M, Chen X, Guo S, Geng H, Müschen M, Choi J, Pereira J. Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin beta receptor signaling. ELife 2023, 12: e83533. PMID: 36912771, PMCID: PMC10042536, DOI: 10.7554/elife.83533.Peer-Reviewed Original ResearchConceptsMesenchymal stem cellsLymphotoxin beta receptorLeukemic cellsBeta receptorsLeukemic cell growthBone marrow microenvironmentStem cellsTransplant recipientsAML cellsMyeloblastic leukemiaMouse modelBone marrowLeukemia growthLymphotoxin α1β2Marrow microenvironmentPharmacological disruptionLymphopoiesisReceptorsHematopoietic outputMolecular mechanismsErythropoiesisDNA damage response pathwayCell growthCellsPhysiological mechanisms
2022
Genetic Modeling of B-cell State Transitions for Rational Design of Lymphoma Therapies.
Leveille E, Kothari S, Müschen M. Genetic Modeling of B-cell State Transitions for Rational Design of Lymphoma Therapies. Blood Cancer Discovery 2022, 4: 8-11. PMID: 36534735, PMCID: PMC9816816, DOI: 10.1158/2643-3230.bcd-22-0180.Commentaries, Editorials and Letters
2021
Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer
Sadras T, Martin M, Kume K, Robinson ME, Saravanakumar S, Lenz G, Chen Z, Song JY, Siddiqi T, Oksa L, Knapp AM, Cutler J, Cosgun KN, Klemm L, Ecker V, Winchester J, Ghergus D, Soulas-Sprauel P, Kiefer F, Heisterkamp N, Pandey A, Ngo V, Wang L, Jumaa H, Buchner M, Ruland J, Chan WC, Meffre E, Martin T, Müschen M. Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer. Molecular Cell 2021, 81: 2094-2111.e9. PMID: 33878293, PMCID: PMC8239336, DOI: 10.1016/j.molcel.2021.03.043.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD19AutoimmunityB-LymphocytesCalciumCell DifferentiationCell Transformation, NeoplasticEnzyme ActivationHumansImmune ToleranceLymphoma, B-CellMiceModels, GeneticNeoplasm ProteinsNeoplasmsNFATC Transcription FactorsPhosphatidylinositol 3-KinasesProtein BindingReceptors, Antigen, B-CellSignal TransductionSyk KinaseZAP-70 Protein-Tyrosine KinasePON2 subverts metabolic gatekeeper functions in B cells to promote leukemogenesis
Pan L, Hong C, Chan LN, Xiao G, Malvi P, Robinson ME, Geng H, Reddy ST, Lee J, Khairnar V, Cosgun KN, Xu L, Kume K, Sadras T, Wang S, Wajapeyee N, Müschen M. PON2 subverts metabolic gatekeeper functions in B cells to promote leukemogenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2016553118. PMID: 33531346, PMCID: PMC7896313, DOI: 10.1073/pnas.2016553118.Peer-Reviewed Original ResearchConceptsTransplant recipient miceDNA double-strand breaksNormal B cell developmentDouble-strand breaksB cell developmentGenetic deletionB cellsLymphoid transcription factorsGlucose transporter GLUT1Gatekeeper functionGlucose uptakeRecipient miceTranscription factorsSomatic recombinationSynthetic lethalityB-cell acute lymphoblastic leukemiaCell developmentMetabolic gatekeeperRefractory B-ALLDeficient murineCell acute lymphoblastic leukemiaPoor clinical outcomeCell typesAcute lymphoblastic leukemiaGlucose transport
2020
IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells
Lee J, Robinson ME, Ma N, Artadji D, Ahmed MA, Xiao G, Sadras T, Deb G, Winchester J, Cosgun KN, Geng H, Chan LN, Kume K, Miettinen TP, Zhang Y, Nix MA, Klemm L, Chen CW, Chen J, Khairnar V, Wiita AP, Thomas-Tikhonenko A, Farzan M, Jung JU, Weinstock DM, Manalis SR, Diamond MS, Vaidehi N, Müschen M. IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells. Nature 2020, 588: 491-497. PMID: 33149299, PMCID: PMC8087162, DOI: 10.1038/s41586-020-2884-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD19B-LymphocytesCell Transformation, NeoplasticFemaleGerminal CenterHumansIntegrinsMembrane MicrodomainsMembrane ProteinsMiceMice, Inbred C57BLMice, Inbred NODModels, MolecularPhosphatidylinositol 3-KinasesPhosphatidylinositol PhosphatesPhosphorylationReceptors, Antigen, B-CellRNA-Binding ProteinsSignal TransductionConceptsPI3KCell leukemiaAntiviral effector functionsAntigen-specific antibodiesInterferon-induced transmembrane proteinsIFITM3 functionDevelopment of leukemiaCell surfacePoor outcomeOncogenic PI3KClinical cohortEffector functionsGerminal centersMouse modelB cellsExpression of IFITM3Malignant transformationAccumulation of PIP3PI3K signalsCell receptorNormal numbersLeukemiaDefective expressionEndosomal proteinIFITM3Signalling input from divergent pathways subverts B cell transformation
Chan LN, Murakami MA, Robinson ME, Caeser R, Sadras T, Lee J, Cosgun KN, Kume K, Khairnar V, Xiao G, Ahmed MA, Aghania E, Deb G, Hurtz C, Shojaee S, Hong C, Pölönen P, Nix MA, Chen Z, Chen CW, Chen J, Vogt A, Heinäniemi M, Lohi O, Wiita AP, Izraeli S, Geng H, Weinstock DM, Müschen M. Signalling input from divergent pathways subverts B cell transformation. Nature 2020, 583: 845-851. PMID: 32699415, PMCID: PMC7394729, DOI: 10.1038/s41586-020-2513-4.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCell Line, TumorCell Transformation, NeoplasticEnzyme ActivationExtracellular Signal-Regulated MAP KinasesFemaleHumansLeukemia, B-CellMiceProtein Tyrosine Phosphatase, Non-Receptor Type 6Proto-Oncogene Proteins c-bcl-6Proto-Oncogene Proteins c-mycSignal TransductionSTAT5 Transcription FactorConceptsPre-B cell receptorPrincipal oncogenic driverDivergent pathwaysSignal transduction proteinsPro-B cell stageSingle-cell mutationTranscription factor MYCOncogenic driversDivergent signaling pathwaysSingle oncogenic pathwayCentral oncogenic driverMore mature cellsGenetic reactivationTranscriptional programsB-cell transformationProtein kinasePathway componentsERK activationIndividual mutationsOncogenic STAT5Signaling pathwaysCell transformationCytokine receptorsGenetic lesionsDivergent circuits
2019
Rationale for targeting BCL6 in MLL-rearranged acute lymphoblastic leukemia
Hurtz C, Chan LN, Geng H, Ballabio E, Xiao G, Deb G, Khoury H, Chen CW, Armstrong SA, Chen J, Ernst P, Melnick A, Milne T, Müschen M. Rationale for targeting BCL6 in MLL-rearranged acute lymphoblastic leukemia. Genes & Development 2019, 33: 1265-1279. PMID: 31395741, PMCID: PMC6719625, DOI: 10.1101/gad.327593.119.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkers, TumorCell SurvivalCells, CulturedGene DeletionGene Expression Regulation, LeukemicGene TargetingHumansMiceMyeloid-Lymphoid Leukemia ProteinOncogene Proteins, FusionPrecursor Cell Lymphoblastic Leukemia-LymphomaPrognosisPromoter Regions, GeneticProto-Oncogene Proteins c-bcl-6ConceptsB-cell acute lymphoblastic leukemiaAcute lymphoblastic leukemiaLymphoblastic leukemiaPharmacological inhibitionGroup of patientsBCL6 expressionBone marrow biopsyBH3 mimetic ABT-199Transplant recipient miceMLL fusionsB-cell transformationMarrow biopsyTreatment of MLLDismal outcomeRecipient miceNormal B cell developmentImmunohistochemical stainingTranscriptional activationB cell developmentMalignant transformationDrug resistanceGenetic deletionPatient samplesExpression of BimMLL-ENL fusionHistone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally
Huang H, Weng H, Zhou K, Wu T, Zhao BS, Sun M, Chen Z, Deng X, Xiao G, Auer F, Klemm L, Wu H, Zuo Z, Qin X, Dong Y, Zhou Y, Qin H, Tao S, Du J, Liu J, Lu Z, Yin H, Mesquita A, Yuan CL, Hu YC, Sun W, Su R, Dong L, Shen C, Li C, Qing Y, Jiang X, Wu X, Sun M, Guan JL, Qu L, Wei M, Müschen M, Huang G, He C, Yang J, Chen J. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 2019, 567: 414-419. PMID: 30867593, PMCID: PMC6438714, DOI: 10.1038/s41586-019-1016-7.Peer-Reviewed Original ResearchConceptsM6A methyltransferase complexHistone H3 trimethylationH3 trimethylationHistone modificationsImportant post-transcriptional mechanismMouse embryonic stem cellsGene expression regulationRNA polymerase IIPrevalent internal modificationPost-transcriptional mechanismsEmbryonic stem cellsN6-methyladenosine (m<sup>6</sup>A) mRNA modificationM6A depositionTranscription elongationNascent RNAMethyltransferase complexPolymerase IIExpression regulationGene expression1RNA methylationMRNA modificationMETTL14 knockdownH3K36me3M6A modificationCell stemness
2018
B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies
Xiao G, Chan LN, Klemm L, Braas D, Chen Z, Geng H, Zhang QC, Aghajanirefah A, Cosgun KN, Sadras T, Lee J, Mirzapoiazova T, Salgia R, Ernst T, Hochhaus A, Jumaa H, Jiang X, Weinstock DM, Graeber TG, Müschen M. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell 2018, 173: 470-484.e18. PMID: 29551267, PMCID: PMC6284818, DOI: 10.1016/j.cell.2018.02.048.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCarbonCell Line, TumorCell SurvivalGlucoseGlucosephosphate DehydrogenaseGlycolysisHumansIkaros Transcription FactorMiceMice, Inbred C57BLMice, Inbred NODOxidative StressPAX5 Transcription FactorPentose Phosphate PathwayPrecursor Cell Lymphoblastic Leukemia-LymphomaProtein Phosphatase 2Proto-Oncogene Proteins c-bcl-2Transcription, GeneticConceptsPentose phosphate pathwayCarbon utilizationSerine/threonine protein phosphatase 2AB-cell transcription factor PAX5Transcription factor Pax5Favor of glycolysisSmall molecule inhibitionPhosphatase 2ATranscriptional repressionRedox homeostasisOncogenic transformationTumor suppressorMolecule inhibitionPP2AGenetic studiesPhosphate pathwayB cell activationEssential roleB-cell malignanciesCell malignanciesB cellsAntioxidant protectionOxidative stressB-cell tumorsCell activation
2017
Targeting the vulnerability to NAD+ depletion in B-cell acute lymphoblastic leukemia
Takao S, Chien W, Madan V, Lin D, Ding L, Sun Q, Mayakonda A, Sudo M, Xu L, Chen Y, Jiang Y, Gery S, Lill M, Park E, Senapedis W, Baloglu E, Müschen M, Koeffler H. Targeting the vulnerability to NAD+ depletion in B-cell acute lymphoblastic leukemia. Leukemia 2017, 32: 616-625. PMID: 28904384, DOI: 10.1038/leu.2017.281.Peer-Reviewed Original ResearchMeSH KeywordsAcrylamidesAminopyridinesAnimalsAntineoplastic AgentsApoptosisCell Line, TumorCell ProliferationCell SurvivalCytokinesDisease Models, AnimalFemaleHumansMaleMiceNADNicotinamide PhosphoribosyltransferaseP21-Activated KinasesPrecursor B-Cell Lymphoblastic Leukemia-LymphomaSignal TransductionXenograft Model Antitumor AssaysConceptsB-cell acute lymphoblastic leukemiaAcute lymphoblastic leukemiaP21-activated kinase 4Nicotinamide phosphoribosyltransferaseLymphoblastic leukemiaNAMPT inhibitionPatient-derived xenograft murine modelsPrognosis of patientsNicotinamide adenine dinucleotideNovel therapeutic strategiesNicotinic acid supplementationNovel dual inhibitorXenograft murine modelCell growth inhibitionAcid supplementationMurine modelTherapeutic strategiesRate-limiting enzymeCytogenetic abnormalitiesVivo efficacyPatientsNAMPT inhibitorsInhibitory effectDual inhibitorKinase 4Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival
Katerndahl CDS, Heltemes-Harris LM, Willette MJL, Henzler CM, Frietze S, Yang R, Schjerven H, Silverstein KAT, Ramsey LB, Hubbard G, Wells AD, Kuiper RP, Scheijen B, van Leeuwen FN, Müschen M, Kornblau SM, Farrar MA. Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival. Nature Immunology 2017, 18: 694-704. PMID: 28369050, PMCID: PMC5540372, DOI: 10.1038/ni.3716.Peer-Reviewed Original ResearchAdaptor Proteins, Signal TransducingAgammaglobulinaemia Tyrosine KinaseAnimalsB-LymphocytesChromatin ImmunoprecipitationFlow CytometryGene Expression Regulation, NeoplasticHumansIkaros Transcription FactorInterferon Regulatory FactorsMiceMultiplex Polymerase Chain ReactionNF-kappa B p50 SubunitPAX5 Transcription FactorPre-B Cell ReceptorsPrecursor Cell Lymphoblastic Leukemia-LymphomaPrognosisProtein Kinase C betaProtein-Tyrosine KinasesProto-Oncogene ProteinsReal-Time Polymerase Chain ReactionSignal TransductionSTAT5 Transcription FactorSurvival RateTrans-ActivatorsMetabolic gatekeeper function of B-lymphoid transcription factors
Chan LN, Chen Z, Braas D, Lee JW, Xiao G, Geng H, Cosgun KN, Hurtz C, Shojaee S, Cazzaniga V, Schjerven H, Ernst T, Hochhaus A, Kornblau SM, Konopleva M, Pufall MA, Cazzaniga G, Liu GJ, Milne TA, Koeffler HP, Ross TS, Sánchez-García I, Borkhardt A, Yamamoto KR, Dickins RA, Graeber TG, Müschen M. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 2017, 542: 479-483. PMID: 28192788, PMCID: PMC5621518, DOI: 10.1038/nature21076.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAMP-Activated Protein Kinase KinasesAMP-Activated Protein KinasesAnimalsB-LymphocytesCarcinogenesisCarrier ProteinsCell DeathChromatin ImmunoprecipitationCitric Acid CycleDisease Models, AnimalEnergy MetabolismFemaleGene Expression Regulation, NeoplasticGlucocorticoidsGlucoseHumansIkaros Transcription FactorMiceMice, TransgenicPAX5 Transcription FactorPrecursor B-Cell Lymphoblastic Leukemia-LymphomaProtein Serine-Threonine KinasesPyruvic AcidReceptor, Cannabinoid, CB2Receptors, GlucocorticoidSequence Analysis, RNATranscription FactorsGenetic analysis of Ikaros target genes and tumor suppressor function in BCR-ABL1+ pre–B ALL
Schjerven H, Ayongaba EF, Aghajanirefah A, McLaughlin J, Cheng D, Geng H, Boyd JR, Eggesbø LM, Lindeman I, Heath JL, Park E, Witte ON, Smale ST, Frietze S, Müschen M. Genetic analysis of Ikaros target genes and tumor suppressor function in BCR-ABL1+ pre–B ALL. Journal Of Experimental Medicine 2017, 214: 793-814. PMID: 28190001, PMCID: PMC5339667, DOI: 10.1084/jem.20160049.Peer-Reviewed Original ResearchConceptsTumor suppressor functionHuman BCR-ABL1Target genesSuppressor functionDevelopmental stage-specific expressionGenome-wide chromatinStage-specific expressionWild-type IkarosTumor suppressor geneChromatin compactionIkaros functionGene pathwaysMultiple genesExpression analysisGenetic analysisInducible expressionTumor suppressorGenetic depletionCell surface markers CD34Suppressor geneGenesIkarosBCR-ABL1Cell acute lymphoblastic leukemiaLeukemic growth
2016
Phosphorylation of a constrained azacyclic FTY720 analog enhances anti-leukemic activity without inducing S1P receptor activation
McCracken A, McMonigle R, Tessier J, Fransson R, Perryman M, Chen B, Keebaugh A, Selwan E, Barr S, Kim S, Roy S, Liu G, Fallegger D, Sernissi L, Brandt C, Moitessier N, Snider A, Clare S, Müschen M, Huwiler A, Kleinman M, Hanessian S, Edinger A. Phosphorylation of a constrained azacyclic FTY720 analog enhances anti-leukemic activity without inducing S1P receptor activation. Leukemia 2016, 31: 669-677. PMID: 27573555, PMCID: PMC5332311, DOI: 10.1038/leu.2016.244.Peer-Reviewed Original ResearchConceptsS1P receptor activationAnti-leukemic actionProtein phosphatase 2APro-apoptotic targetsPhosphatase 2ASphingosine kinase 2Efficient phosphorylationGenetic approachesReceptor activationKinase 2Nutrient accessChemical biologyPhosphorylationTight inverse correlationDistinct mechanismsS1P receptorsAnti-leukemic activityNovel therapeutic approachesLeukemia progressionReceptor activityMRNA expressionAnti-leukemic agentsActivationEnhanced potencyBiologyPTEN opposes negative selection and enables oncogenic transformation of pre-B cells
Shojaee S, Chan LN, Buchner M, Cazzaniga V, Cosgun KN, Geng H, Qiu YH, von Minden MD, Ernst T, Hochhaus A, Cazzaniga G, Melnick A, Kornblau SM, Graeber TG, Wu H, Jumaa H, Müschen M. PTEN opposes negative selection and enables oncogenic transformation of pre-B cells. Nature Medicine 2016, 22: 379-387. PMID: 26974310, PMCID: PMC5178869, DOI: 10.1038/nm.4062.Peer-Reviewed Original ResearchBCOR regulates myeloid cell proliferation and differentiation
Cao Q, Gearhart M, Gery S, Shojaee S, Yang H, Sun H, Lin D, Bai J, Mead M, Zhao Z, Chen Q, Chien W, Alkan S, Alpermann T, Haferlach T, Müschen M, Bardwell V, Koeffler H. BCOR regulates myeloid cell proliferation and differentiation. Leukemia 2016, 30: 1155-1165. PMID: 26847029, PMCID: PMC5131645, DOI: 10.1038/leu.2016.2.Peer-Reviewed Original ResearchConceptsMyeloid cell proliferationHox genesCell proliferationFunction mutationsUbiquitin ligase subunitRNA expression profilingPolycomb groupEnhanced cell proliferationOverexpression allelesHOXA genesExpression profilingGene expressionConditional lossMyeloid differentiationMurine cellsFamily complexesNormal hematopoiesisGenesBone marrow cellsBCOR expressionProtein levelsMechanistic explanationDifferentiation rateAML patient samplesMutationsPre-BCR signaling in precursor B-cell acute lymphoblastic leukemia regulates PI3K/AKT, FOXO1 and MYC, and can be targeted by SYK inhibition
Köhrer S, Havranek O, Seyfried F, Hurtz C, Coffey G, Kim E, ten Hacken E, Jäger U, Vanura K, O'Brien S, Thomas D, Kantarjian H, Ghosh D, Wang Z, Zhang M, Ma W, Jumaa H, Debatin K, Müschen M, Meyer L, Davis R, Burger J. Pre-BCR signaling in precursor B-cell acute lymphoblastic leukemia regulates PI3K/AKT, FOXO1 and MYC, and can be targeted by SYK inhibition. Leukemia 2016, 30: 1246-1254. PMID: 26847027, PMCID: PMC5459356, DOI: 10.1038/leu.2016.9.Peer-Reviewed Original ResearchConceptsB-cell acute lymphoblastic leukemiaSpleen tyrosine kinaseAcute lymphoblastic leukemiaPI3K/AktLymphoblastic leukemiaTherapeutic targetPrecursor B-cell acute lymphoblastic leukemiaPromising new therapeutic targetNew therapeutic targetsGene expression signaturesImmune phenotypeImportant downstream mediatorSYK inhibitionMouse modelPre-BCR signalingReceptor signalingDownstream mediatorExpression signaturesGenetic disruptionLeukemiaExquisite dependencyTyrosine kinaseAktFOXO1Signaling