2019
Ablation of SUN2-containing LINC complexes drives cardiac hypertrophy without interstitial fibrosis
Stewart RM, Rodriguez EC, King MC. Ablation of SUN2-containing LINC complexes drives cardiac hypertrophy without interstitial fibrosis. Molecular Biology Of The Cell 2019, 30: 1664-1675. PMID: 31091167, PMCID: PMC6727752, DOI: 10.1091/mbc.e18-07-0438.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCardiomegalyCell AdhesionCell Nucleus ShapeDNA-Binding ProteinsFibrosisGene DeletionIntegrinsMAP Kinase Signaling SystemMembrane ProteinsMice, Inbred C57BLMice, KnockoutMultiprotein ComplexesMyocardiumNuclear EnvelopeProto-Oncogene Proteins c-aktSarcomeresTelomere-Binding ProteinsTransforming Growth Factor betaConceptsLINC complexType laminsInner nuclear membrane protein MAN1Nuclear envelopeA-type laminsSarcomeric contractile apparatusNuclear laminaDisease etiologyProfibrotic signalingCytoskeletal linkageAKT/MAPK signalingCardiomyocyte cytoskeletonPlasma membraneMAPK signalingNegative regulatorAntagonistic rolesTGFβ signalingLaminsCellular adhesionSignalingCardiac hypertrophySUN2Human cardiomyopathyHypertrophy markersContractile apparatus
2018
Integration of Biochemical and Mechanical Signals at the Nuclear Periphery: Impacts on Skin Development and Disease
Stewart R, King M, Horsley V. Integration of Biochemical and Mechanical Signals at the Nuclear Periphery: Impacts on Skin Development and Disease. Stem Cell Biology And Regenerative Medicine 2018, 263-292. DOI: 10.1007/978-3-319-16769-5_11.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsNuclear laminaIntegral inner nuclear membrane proteinsInner nuclear membrane proteinSkin developmentMechanical signalsNuclear membrane proteinsInner nuclear membraneIntegration of biochemicalGenome integrityNuclear peripheryTranscriptional outputNuclear laminsAssociated chromatinMembrane proteinsNuclear interiorTissue-level mechanicsGene expressionNuclear membraneSkin homeostasisKeratinocyte differentiationMechanical inputChromatinLaminsLaminaProtein
2015
The tethering of chromatin to the nuclear envelope supports nuclear mechanics
Schreiner SM, Koo PK, Zhao Y, Mochrie SG, King MC. The tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nature Communications 2015, 6: 7159. PMID: 26074052, PMCID: PMC4490570, DOI: 10.1038/ncomms8159.Peer-Reviewed Original ResearchConceptsNuclear mechanicsRole of chromatinOptical tweezersWild-type nucleiNetwork of lipidsCytoskeletal forcesNuclear laminaCytoskeletal dynamicsMechanical defensesMembrane tethersDeformable nucleiNuclear envelopeChromatinNuclear shapeIsolated nucleiIndividual mechanical contributionsMembrane resultsNucleusTweezersMechanicsLaminsProteinTetheringLaminaDefense