Featured Publications
Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients
Qu R, Gupta K, Dong D, Jiang Y, Landa B, Saez C, Strickland G, Levinsohn J, Weng PL, Taketo MM, Kluger Y, Myung P. Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients. Developmental Cell 2022, 57: 1053-1067.e5. PMID: 35421372, PMCID: PMC9050909, DOI: 10.1016/j.devcel.2022.03.011.Peer-Reviewed Original ResearchConceptsMorphogen gradientsCell fate specificationWnt/β-cateninFate specificationShape tissuesOrgan formationCell fateDermal condensatesGenetic perturbationsNiche formationDifferentiation processSpatiotemporal patterningCell behaviorΒ-cateninMore intermediatesComputational approachProliferationMorphogenesisScRNAOrganogenesisShhKey componentProgenitorsCritical transitionDKK1Single-Cell Analysis Reveals a Hair Follicle Dermal Niche Molecular Differentiation Trajectory that Begins Prior to Morphogenesis
Gupta K, Levinsohn J, Linderman G, Chen D, Sun TY, Dong D, Taketo MM, Bosenberg M, Kluger Y, Choate K, Myung P. Single-Cell Analysis Reveals a Hair Follicle Dermal Niche Molecular Differentiation Trajectory that Begins Prior to Morphogenesis. Developmental Cell 2018, 48: 17-31.e6. PMID: 30595533, PMCID: PMC6361530, DOI: 10.1016/j.devcel.2018.11.032.Peer-Reviewed Original ResearchConceptsDermal condensatesSingle-cell RNA sequencingUnbiased single-cell RNA sequencingWnt/β-catenin signalingΒ-catenin signalingTranscriptional statesDifferentiation trajectoriesAppendage morphogenesisRNA sequencingHF morphogenesisCellular eventsRecent progenyCell differentiationMorphogenesisClusters of cellsMolecular differencesDistinctive populationCell analysisCellsDifferentiationHF developmentProgenySignalingDC cellsSequencingThe origins of skin diversity: lessons from dermal fibroblasts
Myung P, Andl T, Atit R. The origins of skin diversity: lessons from dermal fibroblasts. Development 2022, 149 PMID: 36444877, PMCID: PMC10112899, DOI: 10.1242/dev.200298.Peer-Reviewed Original ResearchConceptsFibroblast subtypesSingle-cell levelWnt/β-cateninLineage diversificationHair follicle growthDermal developmentDermal fibroblastsExtraordinary diversityPositional signalsNatural variationFibroblast heterogeneityΒ-cateninDevelopmental originsDiverse groupMolecular heterogeneityCentral roleDiversityFibroblastsFollicle growthImportant roleLineagesSpeciesDiversificationDifferentiationOrigin
2021
Inference and analysis of cell-cell communication using CellChat
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-cell communication using CellChat. Nature Communications 2021, 12: 1088. PMID: 33597522, PMCID: PMC7889871, DOI: 10.1038/s41467-021-21246-9.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencing dataCell-cell communicationEffective systems-level analysesDatabase of interactionsRNA sequencing dataIntercellular communication networksContext-specific pathwaysCellChatDiverse tissuesIntercellular communicationSystem-level analysisSignaling linkNetwork analysisPathwayCellsMolecular complexesCofactorComplexesReceptors
2020
Cutaneous Vasculitis After Ustekinumab Induction in Crohn’s Disease
Chugh R, Proctor DD, Little A, Myung P, Cowper S, Imaeda S, Pashankar DS, Al-Bawardy B. Cutaneous Vasculitis After Ustekinumab Induction in Crohn’s Disease. Inflammatory Bowel Diseases 2020, 27: e30-e31. PMID: 33179735, DOI: 10.1093/ibd/izaa285.Peer-Reviewed Case Reports and Technical NotesCutaneous Involvement in Plasma Cell Myeloma
Panse G, Subtil A, McNiff JM, Glusac EJ, Ko CJ, Galan A, Myung P, Xu ML. Cutaneous Involvement in Plasma Cell Myeloma. American Journal Of Clinical Pathology 2020, 155: 106-116. PMID: 32885235, DOI: 10.1093/ajcp/aqaa122.Peer-Reviewed Original ResearchConceptsPlasma cell myelomaCutaneous involvementSquamous cell carcinomaAmyloid depositionCell carcinomaCell myelomaCases of PCMBone marrow involvementCyclin D1 immunoreactivityDisease-related deathLight chain restrictionCCND1 gene rearrangementMarrow involvementSkin involvementClinicopathologic featuresCytomorphologic spectrumCutaneous lesionsPoor outcomeCommon immunophenotypeChain restrictionClinical dataCytogenetic findingsOlder individualsGene rearrangementsMyeloma
2019
Putting Cell Competition under the Microscope
Levinsohn J, Myung P. Putting Cell Competition under the Microscope. Developmental Cell 2019, 49: 823-824. PMID: 31211989, DOI: 10.1016/j.devcel.2019.05.040.Peer-Reviewed Original Research
2018
Cutaneous immunohistochemical staining pattern of p53β isoforms
Ko CJ, Myung P, Leffell DJ, Bourdon JC. Cutaneous immunohistochemical staining pattern of p53β isoforms. Journal Of Clinical Pathology 2018, 71: 1120. PMID: 30305316, DOI: 10.1136/jclinpath-2018-205098.Peer-Reviewed Original ResearchConceptsSquamous tumorsMarkers of differentiationSquamous proliferationIsoforms of p53Mutational statusHair folliclesP53 pathwayDomain mutationsExact biological significanceP53Differentiated layersSkinP53 isoformsSuch mutationsIsoformsDifferent isoformsNumerous functionsTumorsCancerMutationsFolliclesBiological significanceDissecting Wnt Signaling for Melanocyte Regulation during Wound Healing
Sun Q, Rabbani P, Takeo M, Lee SH, Lim CH, Noel ES, Taketo MM, Myung P, Millar S, Ito M. Dissecting Wnt Signaling for Melanocyte Regulation during Wound Healing. Journal Of Investigative Dermatology 2018, 138: 1591-1600. PMID: 29428355, PMCID: PMC6019608, DOI: 10.1016/j.jid.2018.01.030.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCicatrixDisease Models, AnimalFemaleHumansIntercellular Signaling Peptides and ProteinsIntracellular Signaling Peptides and ProteinsKeratinocytesMaleMelanocytesMiceMice, TransgenicReceptors, G-Protein-CoupledRegenerationSkinSkin PigmentationStem CellsWnt ProteinsWnt Signaling PathwayWound HealingConceptsMelanocyte stem cellsMelanocyte regenerationEpidermal melanocytesStem cellsWnt ligand secretionActivation of WntWound healingSignal regulationEssential functionsWnt inhibitor Dkk1Wnt ligandsLigand secretionVital regulatorWnt pathwayTransgenic expressionWntMolecular windowΒ-cateninMelanocyte regulationInhibitor DKK1Epithelial cellsMelanocytesWound scarsRegulationAbnormal pigmentation
2012
Epithelial Wnt Ligand Secretion Is Required for Adult Hair Follicle Growth and Regeneration
Myung PS, Takeo M, Ito M, Atit RP. Epithelial Wnt Ligand Secretion Is Required for Adult Hair Follicle Growth and Regeneration. Journal Of Investigative Dermatology 2012, 133: 31-41. PMID: 22810306, PMCID: PMC3479363, DOI: 10.1038/jid.2012.230.Peer-Reviewed Original ResearchConceptsWnt ligand secretionHair follicle epitheliumFollicle growthHair follicle growthWnt ligandsEpithelial Wnt ligandsHair cycle arrestFollicular epitheliumLigand secretionFollicle epitheliumWnt/β-catenin activationΒ-cateninAnagen inductionWnt/β-cateninStem cell markersΒ-catenin activationPotential cellular targetsHair follicle stem cellsCellular sourceCell markersHair disordersFollicle stem cellsHair folliclesEpitheliumHair follicle regeneration
2011
Coordinated Activation of Wnt in Epithelial and Melanocyte Stem Cells Initiates Pigmented Hair Regeneration
Rabbani P, Takeo M, Chou W, Myung P, Bosenberg M, Chin L, Taketo MM, Ito M. Coordinated Activation of Wnt in Epithelial and Melanocyte Stem Cells Initiates Pigmented Hair Regeneration. Cell 2011, 145: 941-955. PMID: 21663796, PMCID: PMC3962257, DOI: 10.1016/j.cell.2011.05.004.Peer-Reviewed Original ResearchConceptsSecondary hair germMelanocyte stem cellsStem cellsStem cell behaviorStem cell populationHair regenerationHair follicle formationPigment-producing melanocytesHair follicle regenerationHair follicle bulgeEpithelial stem cellsGenetic mouse modelsCoordinated activationWntKey pathwaysCell behaviorWnt activationFollicle bulgeFollicle regenerationComplex organHair germFollicle formationCell populationsMcSCsCells