Regulation of DNA repair in hypoxic cancer cells
Bindra RS, Crosby ME, Glazer PM. Regulation of DNA repair in hypoxic cancer cells. Cancer And Metastasis Reviews 2007, 26: 249-260. PMID: 17415527, DOI: 10.1007/s10555-007-9061-3.Peer-Reviewed Original ResearchConceptsGenetic instabilityMismatch repairHypoxia-induced genetic instabilityDNA damage response factorsDamage response factorsDNA damage responseCellular stress responseATM/ATRDNA repair pathwaysHomologous recombination pathwayCancer cellsAcute DNA damage responseDNA mismatch repairTumor microenvironmental stressDamage responseKey genesHR repairDNA repairRepair pathwaysMicroenvironmental stressHypoxic cancer cellsStress responsePossible mechanistic explanationRecombination pathwayResponse factorCo-repression of mismatch repair gene expression by hypoxia in cancer cells: Role of the Myc/Max network
Bindra RS, Glazer PM. Co-repression of mismatch repair gene expression by hypoxia in cancer cells: Role of the Myc/Max network. Cancer Letters 2007, 252: 93-103. PMID: 17275176, DOI: 10.1016/j.canlet.2006.12.011.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingBasic Helix-Loop-Helix Leucine Zipper Transcription FactorsCell Cycle ProteinsCell HypoxiaCell Line, TumorDNA Mismatch RepairDown-RegulationGene Expression Regulation, NeoplasticGenomic InstabilityHumansHypoxia-Inducible Factor 1MutL Protein Homolog 1MutS Homolog 2 ProteinNeoplasmsNuclear ProteinsPromoter Regions, GeneticProto-Oncogene Proteins c-mycRepressor ProteinsConceptsHypoxia-inducible factorHypoxia-induced genetic instabilityGene expressionGenetic instabilityRepair genesStress response pathwaysC-Myc/MaxStress response factorsMismatch repair genesCancer cellsRepair gene expressionMax complexesCoordinated repressionKey genesDNA repairMMR pathwayProximal promoterMicroenvironmental stressMax networkMMR gene expressionDeficient cellsGenesRepressionEssential roleMMR genes