2001
Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo
Hartlapp I, Abe R, Saeed R, Peng T, Voelter W, Bucala R, Metz C. Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. The FASEB Journal 2001, 15: 2215-2224. PMID: 11641248, DOI: 10.1096/fj.01-0049com.Peer-Reviewed Original ResearchConceptsBlood vessel formationAngiogenic phenotypeVessel formationMesenchymal cell typesEndothelial cell invasionEndothelial cellsExtracellular matrix-degrading enzymesEndothelial cell migrationGrowth factorCellular microenvironmentMatrix-degrading enzymesCell invasionCell migrationCell typesCultured endothelial cellsTube formationHematopoietic growth factorsPromotion of angiogenesisPhenotypeAngiogenesis modelMicrovascular endothelial cellsCultured fibrocytesEnzymeAngiogenesisVivo
1999
Interaction of Borrelia burgdorferi with Peripheral Blood Fibrocytes, Antigen-Presenting Cells with the Potential for Connective Tissue Targeting
Grab D, Lanners H, Martin L, Chesney J, Cai C, Adkisson H, Bucala R. Interaction of Borrelia burgdorferi with Peripheral Blood Fibrocytes, Antigen-Presenting Cells with the Potential for Connective Tissue Targeting. Molecular Medicine 1999, 5: 46-54. PMID: 10072447, PMCID: PMC2230375, DOI: 10.1007/bf03402138.Peer-Reviewed Original ResearchConceptsPeripheral blood fibrocytesBlood fibrocytesDifferent cell typesB. burgdorferiB. burgdorferi bindsInteraction of BorreliaMolecular mechanismsOspB proteinsAntigen presenting cellsCell typesFibroblast-like cellsCellular interactionsCell membraneJoint connective tissuesCollagen type ILyme arthritisPresent antigensInflammatory processT cellsFunctional capacityCellular collagenImmune systemFlow cytometryFibrocytesConnective tissue
1994
Circulating Fibrocytes Define a New Leukocyte Subpopulation That Mediates Tissue Repair
Bucala R, Spiegel L, Chesney J, Hogan M, Cerami A. Circulating Fibrocytes Define a New Leukocyte Subpopulation That Mediates Tissue Repair. Molecular Medicine 1994, 1: 71-81. PMID: 8790603, PMCID: PMC2229929, DOI: 10.1007/bf03403533.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBone MarrowBone Marrow CellsCD4 AntigensCell AdhesionCells, CulturedCentrifugationChimeraCollagenConnective TissueCytoskeletonDNA-Binding ProteinsDose-Response Relationship, RadiationFemaleFibroblastsFlow CytometryFluorescent Antibody TechniqueHumansImmunohistochemistryLeukocytesMaleMiceMice, Inbred BALB CMicroscopy, ElectronMolecular Sequence DataNuclear ProteinsPhenotypeSex-Determining Region Y ProteinTime FactorsTranscription FactorsTransplantation, HeterologousVimentinWound HealingConceptsTissue injuryLeukocyte subpopulationsScar formationLong-term remodelingFibroblast-like propertiesNormal wound repairConnective tissue scarConnective tissue elementsCell typesFibrotic responseTissue scarWound chambersPathological fibrotic responsesHost responseInjuryConnective tissueFibrocytesWound repairFibroblast propertiesTissue repairTissue elementsDistinctive phenotypeSubpopulationsTissueNovel cell types