2016
Inhibition of Regulatory-Associated Protein of Mechanistic Target of Rapamycin Prevents Hyperoxia-Induced Lung Injury by Enhancing Autophagy and Reducing Apoptosis in Neonatal Mice
Sureshbabu A, Syed M, Das P, Janér C, Pryhuber G, Rahman A, Andersson S, Homer RJ, Bhandari V. Inhibition of Regulatory-Associated Protein of Mechanistic Target of Rapamycin Prevents Hyperoxia-Induced Lung Injury by Enhancing Autophagy and Reducing Apoptosis in Neonatal Mice. American Journal Of Respiratory Cell And Molecular Biology 2016, 55: 722-735. PMID: 27374190, PMCID: PMC5105179, DOI: 10.1165/rcmb.2015-0349oc.Peer-Reviewed Original ResearchMeSH KeywordsAcute Lung InjuryAdaptor Proteins, Signal TransducingAlveolar Epithelial CellsAnimalsAnimals, NewbornApoptosisAutophagyBronchopulmonary DysplasiaCell LineFemaleHumansHyperoxiaHypertension, PulmonaryHypertrophy, Right VentricularInfant, NewbornLungMiceMicrotubule-Associated ProteinsNaphthyridinesPhenotypeRegulatory-Associated Protein of mTORTime FactorsTumor Suppressor Protein p53ConceptsAcute lung injuryBronchopulmonary dysplasiaLung injuryWild-type miceMechanistic targetRegulatory-Associated ProteinLysosomal-associated membrane protein 1Apoptotic cell deathFetal type II alveolar epithelial cellsMouse lungRole of autophagyHyperoxia-Induced Lung InjuryLight chain 3Activation of autophagyType II alveolar epithelial cellsRespiratory distress syndromeMembrane protein 1Developmental lung diseaseUseful therapeutic targetNeonatal mouse lungAlveolar epithelial cellsPharmacological inhibitorsTreatment of hyperoxiaCell deathAutophagic flux
2015
Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung
Sureshbabu A, Syed MA, Boddupalli CS, Dhodapkar MV, Homer RJ, Minoo P, Bhandari V. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung. Respiratory Research 2015, 16: 4. PMID: 25591994, PMCID: PMC4307226, DOI: 10.1186/s12931-014-0162-6.Peer-Reviewed Original ResearchMeSH KeywordsAcute Lung InjuryAlveolar Epithelial CellsAnimalsAnimals, NewbornApoptosisDisease Models, AnimalGenotypeHumansHyperoxiaLungMice, Inbred C57BLMice, KnockoutMice, TransgenicPhenotypePneumoniaProtein Serine-Threonine KinasesReceptor, Transforming Growth Factor-beta Type IIReceptors, Transforming Growth Factor betaSignal TransductionTime FactorsTransforming Growth Factor beta1Up-RegulationConceptsImpaired alveolarizationBronchopulmonary dysplasiaAlveolar epithelial cellsPulmonary inflammationPulmonary phenotypeMouse lungAcute lung injuryType II alveolar epithelial cellsApoptotic cell deathCell deathNewborn mouse lungPotential therapeutic strategyGrowth factor betaNull mutant miceLung injuryImproved survivalNeonatal mortalityMonocyte infiltrationAbnormal alveolarizationAngiogenic mediatorsInflammatory signalsTGFβ1 expressionTherapeutic strategiesInflammatory macrophagesLung morphometry
2010
High expression of BCL-2 predicts favorable outcome in non-small cell lung cancer patients with non squamous histology
Anagnostou VK, Lowery FJ, Zolota V, Tzelepi V, Gopinath A, Liceaga C, Panagopoulos N, Frangia K, Tanoue L, Boffa D, Gettinger S, Detterbeck F, Homer RJ, Dougenis D, Rimm DL, Syrigos KN. High expression of BCL-2 predicts favorable outcome in non-small cell lung cancer patients with non squamous histology. BMC Cancer 2010, 10: 186. PMID: 20459695, PMCID: PMC2875218, DOI: 10.1186/1471-2407-10-186.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAgedBiomarkers, TumorCarcinoma, Large CellCarcinoma, Non-Small-Cell LungCarcinoma, Squamous CellCell DifferentiationCohort StudiesConnecticutFemaleGreeceHumansKaplan-Meier EstimateLung NeoplasmsMaleMiddle AgedNeoplasm StagingPredictive Value of TestsProportional Hazards ModelsProto-Oncogene Proteins c-bcl-2Reproducibility of ResultsRetrospective StudiesRisk AssessmentRisk FactorsTime FactorsTreatment OutcomeUp-RegulationConceptsNon-small cell lung cancer patientsCell lung cancer patientsNon-squamous tumorsLung cancer patientsBcl-2 expressionNSCLC patientsCancer patientsBcl-2Favorable outcomeIndependent cohortSmall cell lung cancer patientsIndependent lower riskNon-squamous histologySubgroup of patientsHigh expressersSquamous cell carcinomaHigh Bcl-2 expressionBcl-2 protein levelsSquamous histologyMedian survivalPrognostic factorsValidation cohortCell carcinomaPathological characteristicsPrognostic stratification
2008
Enhanced Innate Immune Responsiveness to Pulmonary Cryptococcus neoformans Infection Is Associated with Resistance to Progressive Infection
Guillot L, Carroll SF, Homer R, Qureshi ST. Enhanced Innate Immune Responsiveness to Pulmonary Cryptococcus neoformans Infection Is Associated with Resistance to Progressive Infection. Infection And Immunity 2008, 76: 4745-4756. PMID: 18678664, PMCID: PMC2546841, DOI: 10.1128/iai.00341-08.Peer-Reviewed Original ResearchConceptsSJL/J miceKC/CXCL1Cryptococcus neoformans infectionC. neoformans infectionKeratinocyte-derived chemokineNeoformans infectionJ miceInnate immune responseTNF-alphaProgressive infectionImmune responseResistant SJL/J miceMIP-2/CXCL2Pulmonary C. neoformans infectionPulmonary Cryptococcus neoformans infectionPulmonary innate immune responseSJL/J macrophagesC. neoformansInflammatory cytokine tumor necrosis factor alphaEnhanced innate immune responseMIP-1alpha/CCL3IL-12/ILMCP-1/CCL2Cytokine tumor necrosis factor alphaTumor necrosis factor alpha
2006
Role of Early Growth Response-1 (Egr-1) in Interleukin-13-induced Inflammation and Remodeling*
Cho SJ, Kang MJ, Homer RJ, Kang HR, Zhang X, Lee PJ, Elias JA, Lee CG. Role of Early Growth Response-1 (Egr-1) in Interleukin-13-induced Inflammation and Remodeling*. Journal Of Biological Chemistry 2006, 281: 8161-8168. PMID: 16439363, DOI: 10.1074/jbc.m506770200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBronchoalveolar LavageCaspasesCell DeathCollagenDNAEarly Growth Response Protein 1Enzyme InhibitorsFibrosisFlavonoidsImmunoblottingIn Situ Nick-End LabelingInflammationInterleukin-13LungMatrix Metalloproteinase 9MiceMice, Inbred C57BLMice, TransgenicMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Models, BiologicalModels, StatisticalRNARNA, MessengerSTAT6 Transcription FactorTh2 CellsTime FactorsTransforming Growth Factor betaTransforming Growth Factor beta1TransgenesConceptsIL-13Early growth response 1IL-13-induced tissue responsesEgr-1Transgenic IL-13Matrix metalloproteinase-9Wild-type miceResponse 1Th2 inflammationCXC chemokinesMetalloproteinase-9Type miceMetalloproteinase-1Transgenic miceAlveolar remodelingTissue inhibitorInflammationPotent stimulatorImportant stimulatorMiceTissue effectsKey roleTissue responsePathogenesisApoptosis regulator
2005
Role of CCR5 in IFN-γ–induced and cigarette smoke–induced emphysema
Ma B, Kang MJ, Lee CG, Chapoval S, Liu W, Chen Q, Coyle AJ, Lora JM, Picarella D, Homer RJ, Elias JA. Role of CCR5 in IFN-γ–induced and cigarette smoke–induced emphysema. Journal Of Clinical Investigation 2005, 115: 3460-3472. PMID: 16284650, PMCID: PMC1280966, DOI: 10.1172/jci24858.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnnexin A5ApoptosisBronchoalveolar LavageCell DeathChemokinesDNADNA PrimersEmphysemaEnzyme-Linked Immunosorbent AssayFemaleImmunohistochemistryIn Situ Nick-End LabelingInflammationInterferon-gammaLigandsLungMacrophagesMatrix Metalloproteinase 9MiceMice, Inbred C57BLMice, TransgenicMutationPhenotypePulmonary AlveoliReceptors, CCR5Reverse Transcriptase Polymerase Chain ReactionRNA, MessengerSmokingTime FactorsConceptsCCR5 ligandsIFN-gammaPotent stimulatorCigarette smoke-induced inflammationCigarette smoke-induced emphysemaSecretory leukocyte protease inhibitorImportance of CCR5Murine emphysema modelPathogenesis of IFNRANTES/CCLSmoke-induced inflammationDNA injuryRole of CCR5Smoke-induced emphysemaLeukocyte protease inhibitorSelect chemokinesTh1 inflammationPulmonary inflammationEmphysema modelCXC chemokinesTissue destructionIFN-gamma stimulationMMP-9CCR5Cigarette smoke
2002
Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling
Zhu Z, Zheng T, Lee CG, Homer RJ, Elias JA. Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Seminars In Cell And Developmental Biology 2002, 13: 121-128. PMID: 12127145, DOI: 10.1016/s1084-9521(02)00018-6.Peer-Reviewed Original ResearchConceptsTetracycline-controlled transcriptional silencerTranscriptional activatorTetracycline-controlled transcriptional activatorTetracycline-controlled transcriptional activation systemCultured cellsTranscriptional activation systemTarget gene expressionVariety of genesReverse tetracycline-controlled transcriptional activatorTranscriptional silencerMammalian systemsPresence of doxycyclineTarget genesNumerous transgenesGene expressionWhole organismTarget transgeneResponsive elementBackground expressionTemporal controlRegulatable systemGenesTransgene expressionRegulatorTransgene
2000
CONSEQUENCES OF LONG-TERM INFLAMMATION Airway Remodeling
Homer R, Elias J. CONSEQUENCES OF LONG-TERM INFLAMMATION Airway Remodeling. Clinics In Chest Medicine 2000, 21: 331-343. PMID: 10907592, DOI: 10.1016/s0272-5231(05)70270-7.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAsthmaBronchiCytokinesHumansInflammationMuscle, SmoothRegional Blood FlowRespiratory SystemTime FactorsConceptsAirway remodelingAirway chronic inflammationEffect of therapyAirway inflammationAsthmatic patientsAppropriate therapyChronic inflammationClinical manifestationsSmooth muscleCollagen depositionExperimental modelMucus glandsBiologic dataRemodelingAirwayInflammationTherapyAsthmaticsAsthmaPatientsNoncollagenous matrix