2016
Inhibition of Regulatory-Associated Protein of Mechanistic Target of Rapamycin Prevents Hyperoxia-Induced Lung Injury by Enhancing Autophagy and Reducing Apoptosis in Neonatal Mice
Sureshbabu A, Syed M, Das P, Janér C, Pryhuber G, Rahman A, Andersson S, Homer RJ, Bhandari V. Inhibition of Regulatory-Associated Protein of Mechanistic Target of Rapamycin Prevents Hyperoxia-Induced Lung Injury by Enhancing Autophagy and Reducing Apoptosis in Neonatal Mice. American Journal Of Respiratory Cell And Molecular Biology 2016, 55: 722-735. PMID: 27374190, PMCID: PMC5105179, DOI: 10.1165/rcmb.2015-0349oc.Peer-Reviewed Original ResearchMeSH KeywordsAcute Lung InjuryAdaptor Proteins, Signal TransducingAlveolar Epithelial CellsAnimalsAnimals, NewbornApoptosisAutophagyBronchopulmonary DysplasiaCell LineFemaleHumansHyperoxiaHypertension, PulmonaryHypertrophy, Right VentricularInfant, NewbornLungMiceMicrotubule-Associated ProteinsNaphthyridinesPhenotypeRegulatory-Associated Protein of mTORTime FactorsTumor Suppressor Protein p53ConceptsAcute lung injuryBronchopulmonary dysplasiaLung injuryWild-type miceMechanistic targetRegulatory-Associated ProteinLysosomal-associated membrane protein 1Apoptotic cell deathFetal type II alveolar epithelial cellsMouse lungRole of autophagyHyperoxia-Induced Lung InjuryLight chain 3Activation of autophagyType II alveolar epithelial cellsRespiratory distress syndromeMembrane protein 1Developmental lung diseaseUseful therapeutic targetNeonatal mouse lungAlveolar epithelial cellsPharmacological inhibitorsTreatment of hyperoxiaCell deathAutophagic flux
2015
Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung
Sureshbabu A, Syed MA, Boddupalli CS, Dhodapkar MV, Homer RJ, Minoo P, Bhandari V. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung. Respiratory Research 2015, 16: 4. PMID: 25591994, PMCID: PMC4307226, DOI: 10.1186/s12931-014-0162-6.Peer-Reviewed Original ResearchMeSH KeywordsAcute Lung InjuryAlveolar Epithelial CellsAnimalsAnimals, NewbornApoptosisDisease Models, AnimalGenotypeHumansHyperoxiaLungMice, Inbred C57BLMice, KnockoutMice, TransgenicPhenotypePneumoniaProtein Serine-Threonine KinasesReceptor, Transforming Growth Factor-beta Type IIReceptors, Transforming Growth Factor betaSignal TransductionTime FactorsTransforming Growth Factor beta1Up-RegulationConceptsImpaired alveolarizationBronchopulmonary dysplasiaAlveolar epithelial cellsPulmonary inflammationPulmonary phenotypeMouse lungAcute lung injuryType II alveolar epithelial cellsApoptotic cell deathCell deathNewborn mouse lungPotential therapeutic strategyGrowth factor betaNull mutant miceLung injuryImproved survivalNeonatal mortalityMonocyte infiltrationAbnormal alveolarizationAngiogenic mediatorsInflammatory signalsTGFβ1 expressionTherapeutic strategiesInflammatory macrophagesLung morphometry
2013
Hyperoxia and Interferon-γ–Induced Injury in Developing Lungs Occur via Cyclooxygenase-2 and the Endoplasmic Reticulum Stress–Dependent Pathway
Choo-Wing R, Syed MA, Harijith A, Bowen B, Pryhuber G, Janér C, Andersson S, Homer RJ, Bhandari V. Hyperoxia and Interferon-γ–Induced Injury in Developing Lungs Occur via Cyclooxygenase-2 and the Endoplasmic Reticulum Stress–Dependent Pathway. American Journal Of Respiratory Cell And Molecular Biology 2013, 48: 749-757. PMID: 23470621, PMCID: PMC3727872, DOI: 10.1165/rcmb.2012-0381oc.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBronchopulmonary DysplasiaCelecoxibCell DeathCyclooxygenase 2Cyclooxygenase 2 InhibitorsEndoplasmic Reticulum StressHumansHyperoxiaImmunohistochemistryInfant, NewbornInterferon-gammaLungMiceMice, Inbred C57BLMice, TransgenicPyrazolesRNA, Small InterferingSulfonamidesTranscription Factor CHOPConceptsBronchopulmonary dysplasiaCyclooxygenase-2Endoplasmic reticulum stress-dependent pathwaysER stress pathway activationPathway mediatorsHuman bronchopulmonary dysplasiaFinal common pathwayAlveolar epithelial cellsImpaired alveolarizationStress pathway activationCOX2 inhibitionMurine modelMurine lungClinical relevanceIFNVivo modelHyperoxiaLungHuman lungPathway activationCHOP siRNAStress-dependent pathwaysInjuryEpithelial cellsCommon pathwayA Critical Regulatory Role for Macrophage Migration Inhibitory Factor in Hyperoxia-Induced Injury in the Developing Murine Lung
Sun H, Choo-Wing R, Sureshbabu A, Fan J, Leng L, Yu S, Jiang D, Noble P, Homer RJ, Bucala R, Bhandari V. A Critical Regulatory Role for Macrophage Migration Inhibitory Factor in Hyperoxia-Induced Injury in the Developing Murine Lung. PLOS ONE 2013, 8: e60560. PMID: 23637753, PMCID: PMC3639272, DOI: 10.1371/journal.pone.0060560.Peer-Reviewed Original ResearchMeSH KeywordsAngiopoietinsAnimalsBronchoalveolar LavageCell CountGene Expression RegulationGene Knockout TechniquesHyperoxiaInterleukin-6LungLung InjuryMacrophage Migration-Inhibitory FactorsMiceMice, TransgenicPhenotypeReceptor, TIE-2Receptors, Vascular Endothelial Growth FactorVascular Endothelial Growth Factor AConceptsMIF knockoutHyperoxia exposureRoom airAngiopoietin-1Macrophage migration inhibitory factorHyperoxia-Induced InjuryAcute lung injuryProtein expressionRoom air controlsMigration inhibitory factorAngiopoietin-2 proteinTie-2 proteinMechanism of actionVascular mediatorsLung injuryControl lungsMIF mRNANewborn lungWT lungsNeonatal lungPostnatal dayMurine lungTransgenic miceLung morphometryCritical regulatory molecules
2012
Increased Hyperoxia-Induced Lung Injury in Nitric Oxide Synthase 2 Null Mice Is Mediated via Angiopoietin 2
Bhandari V, Choo-Wing R, Harijith A, Sun H, Syed MA, Homer RJ, Elias JA. Increased Hyperoxia-Induced Lung Injury in Nitric Oxide Synthase 2 Null Mice Is Mediated via Angiopoietin 2. American Journal Of Respiratory Cell And Molecular Biology 2012, 46: 668-676. PMID: 22227562, PMCID: PMC3359903, DOI: 10.1165/rcmb.2011-0074oc.Peer-Reviewed Original ResearchConceptsHyperoxic acute lung injuryNOS/nitric oxideNitric oxideLung injuryAngiopoietin-2Pathogenesis of HALIAlveolar-capillary protein leakAcute respiratory distress syndromeHyperoxia-Induced Lung InjuryAcute lung injuryRespiratory distress syndromeImportant protective roleCell deathBronchopulmonary dysplasiaDistress syndromeSupplemental oxygenNb miceProtein leakTissue injuryProtective roleNewbornsNull micePremature deathAdult controlsAng2
2011
A Role for Matrix Metalloproteinase 9 in IFNγ-Mediated Injury in Developing Lungs
Harijith A, Choo-Wing R, Cataltepe S, Yasumatsu R, Aghai ZH, Janér J, Andersson S, Homer RJ, Bhandari V. A Role for Matrix Metalloproteinase 9 in IFNγ-Mediated Injury in Developing Lungs. American Journal Of Respiratory Cell And Molecular Biology 2011, 44: 621-630. PMID: 21216975, PMCID: PMC3095982, DOI: 10.1165/rcmb.2010-0058oc.Peer-Reviewed Original ResearchConceptsBronchopulmonary dysplasiaHuman bronchopulmonary dysplasiaLung architectureRole of IFNγMatrix metalloproteinase-9Caspase-3Final common pathwayMatrix metalloproteinases 2Downstream targetsImpaired alveolarizationLung injuryChemokine ligandMetalloproteinase-9IFNγ mRNAAngiopoietin-2Murine modelLittermate controlsPulmonary phenotypeMurine lungClinical relevanceLung phenotypeAngiopoietin-1IFNγMetalloproteinases 2Lung
2008
Developmental Regulation of NO-Mediated VEGF-Induced Effects in the Lung
Bhandari V, Choo-Wing R, Lee CG, Yusuf K, Nedrelow JH, Ambalavanan N, Malkus H, Homer RJ, Elias JA. Developmental Regulation of NO-Mediated VEGF-Induced Effects in the Lung. American Journal Of Respiratory Cell And Molecular Biology 2008, 39: 420-430. PMID: 18441284, PMCID: PMC2551703, DOI: 10.1165/rcmb.2007-0024oc.Peer-Reviewed Original ResearchMeSH KeywordsAmniotic FluidAnimalsAnimals, NewbornBronchopulmonary DysplasiaCapillary PermeabilityFemaleHemorrhageHumansHyperoxiaInfant, NewbornLungLung DiseasesMiceMice, TransgenicNitric OxidePregnancyPulmonary SurfactantsRespiratory Distress Syndrome, NewbornTracheaVascular Endothelial Growth Factor AConceptsVascular endothelial growth factorVEGF levelsLung developmentNitric oxide mediationNO-dependent mechanismAdult murine lungPotential clinical benefitTransgenic murine modelSignificant differencesEndothelial growth factorBronchopulmonary dysplasiaLung injuryPulmonary hemorrhageCytokine responsesClinical benefitNeonatal lungHuman neonatesMurine modelMurine lungMature lungLungPathologic conditionsAdult lungSurfactant phospholipidsExtravascular effects
2007
Increased Hyperoxia-Induced Mortality and Acute Lung Injury in IL-13 Null Mice
Bhandari V, Choo-Wing R, Homer RJ, Elias JA. Increased Hyperoxia-Induced Mortality and Acute Lung Injury in IL-13 Null Mice. The Journal Of Immunology 2007, 178: 4993-5000. PMID: 17404281, DOI: 10.4049/jimmunol.178.8.4993.Peer-Reviewed Original ResearchConceptsEndogenous IL-13Acute lung injuryIL-13Lung injuryIL-13RNull miceHyperoxic acute lung injuryInhibition of injuryBronchoalveolar lavage fluidInduction of inflammationEndothelial cell growth factorVascular endothelial cell growth factorIL-13 locusCell growth factorTh2 inflammationLavage fluidIL-6Tissue inflammationVariety of diseasesIL-13Ralpha1Diseased lungsIL-4RalphaInflammationInjuryIL-11Developmental differences in the responses of IL-6 and IL-13 transgenic mice exposed to hyperoxia
Choo-Wing R, Nedrelow JH, Homer RJ, Elias JA, Bhandari V. Developmental differences in the responses of IL-6 and IL-13 transgenic mice exposed to hyperoxia. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2007, 293: l142-l150. PMID: 17400600, DOI: 10.1152/ajplung.00434.2006.Peer-Reviewed Original ResearchConceptsIL-13 transgenic miceIL-6Transgenic miceTracheal aspirate levelsWild-type littermate controlsIL-6 levelsRespiratory distress syndromeAngiogenic factor expressionLung injuryDistress syndromePremature neonatesTracheal aspiratesAdverse outcomesIL-13Human neonatesProtective effectSurvival advantageLittermate controlsAdult miceClinical relevanceTUNEL stainingCytoprotective effectsNewborn animalsMature miceFactor expression
2006
Hyperoxia causes angiopoietin 2–mediated acute lung injury and necrotic cell death
Bhandari V, Choo-Wing R, Lee CG, Zhu Z, Nedrelow JH, Chupp GL, Zhang X, Matthay MA, Ware LB, Homer RJ, Lee PJ, Geick A, de Fougerolles AR, Elias JA. Hyperoxia causes angiopoietin 2–mediated acute lung injury and necrotic cell death. Nature Medicine 2006, 12: 1286-1293. PMID: 17086189, PMCID: PMC2768268, DOI: 10.1038/nm1494.Peer-Reviewed Original ResearchMeSH KeywordsAngiopoietin-2AnimalsCell DeathHyperoxiaMicePulmonary EdemaRNA, MessengerRNA, Small InterferingConceptsAcute lung injuryHyperoxic acute lung injuryLung injuryPulmonary edemaEpithelial necrosisAlveolar edema fluidSiRNA-treated miceCell deathLung epithelial cellsEndothelial cell apoptosisBronchopulmonary dysplasiaVascular leakAngiopoietin-2Edema fluidOxidant injuryAng2 expressionHyperoxiaAng2Vascular regressionBlood vesselsCell apoptosisInjuryNecrotic cell deathEpithelial cellsCell death pathways
2005
Cutting Edge: TLR4 Deficiency Confers Susceptibility to Lethal Oxidant Lung Injury
Zhang X, Shan P, Qureshi S, Homer R, Medzhitov R, Noble PW, Lee PJ. Cutting Edge: TLR4 Deficiency Confers Susceptibility to Lethal Oxidant Lung Injury. The Journal Of Immunology 2005, 175: 4834-4838. PMID: 16210584, DOI: 10.4049/jimmunol.175.8.4834.Peer-Reviewed Original ResearchConceptsTLR4-deficient miceLung injuryAntioxidant gene heme oxygenase-1Gene heme oxygenase-1Oxidant lung injuryBcl-2Heme oxygenase-1Life-sustaining measuresPhospho-Akt levelsNovel mechanistic linkRespiratory failureIll patientsLung integrityMurine modelOxygenase-1Oxidant stressProtective roleHost responseInnate immunityInjuryPhospho-AktHyperoxiaConfer susceptibilityMiceMammalian TLR4IL-11 Receptor α in the Pathogenesis of IL-13-Induced Inflammation and Remodeling
Chen Q, Rabach L, Noble P, Zheng T, Lee CG, Homer RJ, Elias JA. IL-11 Receptor α in the Pathogenesis of IL-13-Induced Inflammation and Remodeling. The Journal Of Immunology 2005, 174: 2305-2313. PMID: 15699166, DOI: 10.4049/jimmunol.174.4.2305.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsChemokines, CCFibroblastsHyaluronic AcidHyperoxiaInflammationInterleukin-11Interleukin-11 Receptor alpha SubunitInterleukin-13Interleukin-13 Receptor alpha1 SubunitLungMatrix MetalloproteinasesMetaplasiaMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMucinsProtein SubunitsPulmonary AlveoliPulmonary FibrosisReceptors, InterleukinReceptors, Interleukin-11Receptors, Interleukin-13Respiratory InsufficiencySignal TransductionTransforming Growth Factor betaTransforming Growth Factor beta1ConceptsIL-13-induced inflammationIL-13IL-11IL-11RalphaIL-13-induced tissue responsesPotent stimulatorTransgenic IL-13Tissue effectsWild-type miceHyaluronic acid accumulationMucus metaplasiaTh2 inflammationRespiratory failureInflammatory disordersGob-5Major stimulatorCC chemokinesMyofibroblast accumulationInflammationTransgenic miceAlveolar remodelingReceptor αMatrix metalloproteinasesMiceDependent pathway
2003
Pulmonary Expression of Leukemia Inhibitory Factor Induces B Cell Hyperplasia and Confers Protection in Hyperoxia*
Wang J, Chen Q, Corne J, Zhu Z, Lee CG, Bhandari V, Homer RJ, Elias JA. Pulmonary Expression of Leukemia Inhibitory Factor Induces B Cell Hyperplasia and Confers Protection in Hyperoxia*. Journal Of Biological Chemistry 2003, 278: 31226-31232. PMID: 12782633, DOI: 10.1074/jbc.m301820200.Peer-Reviewed Original ResearchConceptsLeukemia inhibitory factorB-cell hyperplasiaCell hyperplasiaIL-6Protective effectTransgenic miceAlveolar-capillary protein leakB cell-mediated responsesInhibitory factorAdult respiratory distress syndromeHyperoxic acute lung injuryAcute lung injuryRespiratory distress syndromeCell-mediated responsesInduction of interleukinBronchoalveolar lavage cellularityHuman leukemia inhibitory factorLung injuryDistress syndromeLavage cellularityPulmonary expressionProtein leakRespiratory effectsOxidant injuryB lymphocytes
2000
IL-13 stimulates vascular endothelial cell growth factor and protects against hyperoxic acute lung injury
Corne J, Chupp G, Lee C, Homer R, Zhu Z, Chen Q, Ma B, Du Y, Roux F, McArdle J, Waxman A, Elias J. IL-13 stimulates vascular endothelial cell growth factor and protects against hyperoxic acute lung injury. Journal Of Clinical Investigation 2000, 106: 783-791. PMID: 10995789, PMCID: PMC381393, DOI: 10.1172/jci9674.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodiesBlotting, WesternBronchoalveolar Lavage FluidEndothelial Growth FactorsEpithelial CellsFibroblast Growth Factor 10Fibroblast Growth Factor 7Fibroblast Growth FactorsGene Expression RegulationGrowth SubstancesHyperoxiaImmunohistochemistryInterleukin-13LungLymphokinesMacrophagesMiceMice, TransgenicMuscle, SmoothOxygenProtein IsoformsSurvival RateVascular Endothelial Growth Factor AVascular Endothelial Growth FactorsConceptsAcute lung injuryHyperoxic acute lung injuryIL-13Lung injuryVEGF accumulationProtective effectTransgenic miceRoom airNontransgenic littermate controlsBreathing room airAcid isoformEndothelial cell growth factorVascular endothelial cell growth factorMice breathing room airCell growth factorBronchoalveolar lavageNontransgenic miceLittermate controlsImportant causeAntibody neutralizationMiceGrowth factorInjuryHyperoxiaSurvivalInterleukin-6–Induced Protection in Hyperoxic Acute Lung Injury
Ward N, Waxman A, Homer R, Mantell L, Einarsson O, Du Y, Elias J. Interleukin-6–Induced Protection in Hyperoxic Acute Lung Injury. American Journal Of Respiratory Cell And Molecular Biology 2000, 22: 535-542. PMID: 10783124, DOI: 10.1165/ajrcmb.22.5.3808.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntioxidantsApoptosisBcl-2-Associated X ProteinBronchoalveolar Lavage FluidCells, CulturedHyperoxiaIn Situ Nick-End LabelingInterleukin-6Lipid PeroxidationLungMiceMice, TransgenicMicroscopy, ElectronProto-Oncogene ProteinsProto-Oncogene Proteins c-bcl-2Superoxide DismutaseTissue Inhibitor of Metalloproteinase-1ConceptsIL-6Lung injuryTransgene (-) animalsAlveolar-capillary protein leakHyperoxic acute lung injurySuperoxide dismutaseAcute lung injuryLung lipid peroxidationHyperoxic lung injurySignificant alterationsBcl-2Cell deathDNA fragmentationProtein leakManganese superoxide dismutaseProtective effectMetalloproteinase-1TIMP-1Transgenic miceTissue inhibitorInjuryZinc superoxide dismutaseMarked diminutionLipid peroxidationCytopathic response
1998
Targeted lung expression of interleukin-11 enhances murine tolerance of 100% oxygen and diminishes hyperoxia-induced DNA fragmentation.
Waxman AB, Einarsson O, Seres T, Knickelbein RG, Warshaw JB, Johnston R, Homer RJ, Elias JA. Targeted lung expression of interleukin-11 enhances murine tolerance of 100% oxygen and diminishes hyperoxia-induced DNA fragmentation. Journal Of Clinical Investigation 1998, 101: 1970-1982. PMID: 9576762, PMCID: PMC508784, DOI: 10.1172/jci1337.Peer-Reviewed Original ResearchConceptsIL-11Lung injuryTransgene (-) animalsIL-1Alveolar-capillary protein leakPulmonary neutrophil recruitmentAcute lung injuryHyperoxic gas mixtureDNA fragmentationLevels of totalMurine toleranceLung expressionNeutrophil recruitmentProtein leakTNF productionLung antioxidantsTransgenic miceCopper-zinc superoxide dismutaseZinc superoxide dismutaseHyperoxiaGlutathione peroxidaseLipid peroxidationInjuryOxygen toxicityDismutase activity