2023
IFN-γ Is Protective in Cytokine Release Syndrome-associated Extrapulmonary Acute Lung Injury.
Sun Y, Hu B, Stanley G, Harris ZM, Gautam S, Homer R, Koff JL, Rajagopalan G. IFN-γ Is Protective in Cytokine Release Syndrome-associated Extrapulmonary Acute Lung Injury. American Journal Of Respiratory Cell And Molecular Biology 2023, 68: 75-89. PMID: 36125351, PMCID: PMC9817908, DOI: 10.1165/rcmb.2022-0117oc.Peer-Reviewed Original ResearchMeSH KeywordsAcute Lung InjuryAnimalsCytokine Release SyndromeCytokinesHumansInterferon-gammaInterleukin-17LungMiceMice, Inbred C57BLMice, KnockoutConceptsCytokine release syndromeAcute lung injuryExtrapulmonary acute lung injuryIFN-γ KO miceIL-17ALung injuryKO miceStaphylococcal enterotoxin BRelease syndromeIL-17A KO miceSevere acute lung injuryAcute respiratory distress syndromeSystemic T cell activationEnterotoxin BAdaptive T lymphocytesDR3 transgenic miceNeutralization of IFNRespiratory distress syndromeHuman leukocyte antigenRole of IFNT cell cytokinesJanus kinase inhibitorS100A8/A9T cell activationALI parameters
2022
Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report
Kulkarni HS, Lee JS, Bastarache JA, Kuebler WM, Downey GP, Albaiceta GM, Altemeier WA, Artigas A, Bates JHT, Calfee CS, Dela Cruz CS, Dickson RP, Englert JA, Everitt JI, Fessler MB, Gelman AE, Gowdy KM, Groshong SD, Herold S, Homer RJ, Horowitz JC, Hsia CCW, Kurahashi K, Laubach VE, Looney MR, Lucas R, Mangalmurti NS, Manicone AM, Martin TR, Matalon S, Matthay MA, McAuley DF, McGrath-Morrow SA, Mizgerd JP, Montgomery SA, Moore BB, Noël A, Perlman CE, Reilly JP, Schmidt EP, Skerrett SJ, Suber TL, Summers C, Suratt BT, Takata M, Tuder R, Uhlig S, Witzenrath M, Zemans RL, Matute-Bello G. Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. American Journal Of Respiratory Cell And Molecular Biology 2022, 66: e1-e14. PMID: 35103557, PMCID: PMC8845128, DOI: 10.1165/rcmb.2021-0531st.Peer-Reviewed Original ResearchConceptsExperimental acute lung injuryAcute lung injuryAcute respiratory distress syndromeRespiratory distress syndromeLung injuryDistress syndromeOfficial American Thoracic Society Workshop ReportHuman acute respiratory distress syndromeAlveolar-capillary barrierKey pathophysiologic featuresAspects of injury
2016
Inhibition of Regulatory-Associated Protein of Mechanistic Target of Rapamycin Prevents Hyperoxia-Induced Lung Injury by Enhancing Autophagy and Reducing Apoptosis in Neonatal Mice
Sureshbabu A, Syed M, Das P, Janér C, Pryhuber G, Rahman A, Andersson S, Homer RJ, Bhandari V. Inhibition of Regulatory-Associated Protein of Mechanistic Target of Rapamycin Prevents Hyperoxia-Induced Lung Injury by Enhancing Autophagy and Reducing Apoptosis in Neonatal Mice. American Journal Of Respiratory Cell And Molecular Biology 2016, 55: 722-735. PMID: 27374190, PMCID: PMC5105179, DOI: 10.1165/rcmb.2015-0349oc.Peer-Reviewed Original ResearchMeSH KeywordsAcute Lung InjuryAdaptor Proteins, Signal TransducingAlveolar Epithelial CellsAnimalsAnimals, NewbornApoptosisAutophagyBronchopulmonary DysplasiaCell LineFemaleHumansHyperoxiaHypertension, PulmonaryHypertrophy, Right VentricularInfant, NewbornLungMiceMicrotubule-Associated ProteinsNaphthyridinesPhenotypeRegulatory-Associated Protein of mTORTime FactorsTumor Suppressor Protein p53ConceptsAcute lung injuryBronchopulmonary dysplasiaLung injuryWild-type miceMechanistic targetRegulatory-Associated ProteinLysosomal-associated membrane protein 1Apoptotic cell deathFetal type II alveolar epithelial cellsMouse lungRole of autophagyHyperoxia-Induced Lung InjuryLight chain 3Activation of autophagyType II alveolar epithelial cellsRespiratory distress syndromeMembrane protein 1Developmental lung diseaseUseful therapeutic targetNeonatal mouse lungAlveolar epithelial cellsPharmacological inhibitorsTreatment of hyperoxiaCell deathAutophagic flux
2015
Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung
Sureshbabu A, Syed MA, Boddupalli CS, Dhodapkar MV, Homer RJ, Minoo P, Bhandari V. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung. Respiratory Research 2015, 16: 4. PMID: 25591994, PMCID: PMC4307226, DOI: 10.1186/s12931-014-0162-6.Peer-Reviewed Original ResearchMeSH KeywordsAcute Lung InjuryAlveolar Epithelial CellsAnimalsAnimals, NewbornApoptosisDisease Models, AnimalGenotypeHumansHyperoxiaLungMice, Inbred C57BLMice, KnockoutMice, TransgenicPhenotypePneumoniaProtein Serine-Threonine KinasesReceptor, Transforming Growth Factor-beta Type IIReceptors, Transforming Growth Factor betaSignal TransductionTime FactorsTransforming Growth Factor beta1Up-RegulationConceptsImpaired alveolarizationBronchopulmonary dysplasiaAlveolar epithelial cellsPulmonary inflammationPulmonary phenotypeMouse lungAcute lung injuryType II alveolar epithelial cellsApoptotic cell deathCell deathNewborn mouse lungPotential therapeutic strategyGrowth factor betaNull mutant miceLung injuryImproved survivalNeonatal mortalityMonocyte infiltrationAbnormal alveolarizationAngiogenic mediatorsInflammatory signalsTGFβ1 expressionTherapeutic strategiesInflammatory macrophagesLung morphometry