2023
Spatial epigenome–transcriptome co-profiling of mammalian tissues
Zhang D, Deng Y, Kukanja P, Agirre E, Bartosovic M, Dong M, Ma C, Ma S, Su G, Bao S, Liu Y, Xiao Y, Rosoklija G, Dwork A, Mann J, Leong K, Boldrini M, Wang L, Haeussler M, Raphael B, Kluger Y, Castelo-Branco G, Fan R. Spatial epigenome–transcriptome co-profiling of mammalian tissues. Nature 2023, 616: 113-122. PMID: 36922587, PMCID: PMC10076218, DOI: 10.1038/s41586-023-05795-1.Peer-Reviewed Original ResearchConceptsGene expressionSingle-cell resolutionChromatin accessibilityJoint profilingHistone modificationsGene regulationCellular statesEpigenetic mechanismsCentral dogmaSpatial transcriptomeTranscriptional phenotypeCell statesOmics informationSpatial transcriptomicsEpigenetic primingMammalian tissuesEpigenomeMolecular biologyTissue architectureCell dynamicsMechanistic relationshipDifferential rolesNew insightsMouse brainProfiling
2020
An Integrated Dielectrophoresis-Trapping and Nanowell Transfer Approach to Enable Double-Sub-Poisson Single-Cell RNA Sequencing
Bai Z, Deng Y, Kim D, Chen Z, Xiao Y, Fan R. An Integrated Dielectrophoresis-Trapping and Nanowell Transfer Approach to Enable Double-Sub-Poisson Single-Cell RNA Sequencing. ACS Nano 2020, 14: 7412-7424. PMID: 32437127, DOI: 10.1021/acsnano.0c02953.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsHigh-Throughput Nucleotide SequencingMiceMicrofluidicsSequence Analysis, RNASingle-Cell AnalysisConceptsBead loadingLoading rateLoadingTransfer efficiencyHigh-yield loadingCell trappingNanowell arraysVersatile designSubsequent encapsulationDevicesMicrowell arrayTransfer approachCurrent technologyFundamental limitationsBeadsActive manipulationSingle cellsWellsArrayDielectrophoresisMicrofluidicsStochastic pairing