2022
Longitudinal serum proteomics analyses identify unique and overlapping host response pathways in Lyme disease and West Nile virus infection
Boada P, Fatou B, Belperron A, Sigdel T, Smolen K, Wurie Z, Levy O, Ronca S, Murray K, Liberto J, Rashmi P, Kerwin M, Montgomery R, Bockenstedt L, Steen H, Sarwal M. Longitudinal serum proteomics analyses identify unique and overlapping host response pathways in Lyme disease and West Nile virus infection. Frontiers In Immunology 2022, 13: 1012824. PMID: 36569838, PMCID: PMC9784464, DOI: 10.3389/fimmu.2022.1012824.Peer-Reviewed Original ResearchConceptsWest Nile virus infectionLyme diseaseVirus infectionWNV infectionSerum proteomeSymptomatic WNV infectionTime of diagnosisHealthy control seraDisseminated Lyme diseaseHost response pathwaysExtracellular bacterial infectionsSerum proteomic analysisIntracellular viral infectionsViral infectionHost responseBacterial infectionsControl seraStudy participantsInfectionDiseaseDisease biomarkersEarly diagnosticsLC/MSMolecular mechanismsRecovery phaseAnalytical Approaches to Uncover Genetic Associations for Rare Outcomes: Lessons from West Nile Neuroinvasive Disease
Cahill M, Montgomery R. Analytical Approaches to Uncover Genetic Associations for Rare Outcomes: Lessons from West Nile Neuroinvasive Disease. Methods In Molecular Biology 2022, 2585: 193-203. PMID: 36331775, PMCID: PMC9867870, DOI: 10.1007/978-1-0716-2760-0_17.Peer-Reviewed Original ResearchConceptsWest Nile neuroinvasive diseaseNeuroinvasive diseaseViral infectionWest Nile viral infectionSevere neuroinvasive diseaseMore severe outcomesGenetic factorsRare outcomesLimited cohort sizeSevere West Nile neuroinvasive diseaseWest Nile infectionVector-borne viral infectionSevere outcomesImmune responseSevere diseaseHigh riskFatal diseaseVaccine developmentInfectionDiseaseInfected humansWest NileSerious diseaseOutcomesCohort size
2016
Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease
Pillai PS, Molony RD, Martinod K, Dong H, Pang IK, Tal MC, Solis AG, Bielecki P, Mohanty S, Trentalange M, Homer RJ, Flavell RA, Wagner DD, Montgomery RR, Shaw AC, Staeheli P, Iwasaki A. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science 2016, 352: 463-466. PMID: 27102485, PMCID: PMC5465864, DOI: 10.1126/science.aaf3926.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdultAgedAged, 80 and overAnimalsBacterial InfectionsCaspase 1CaspasesCaspases, InitiatorFemaleHumansImmunity, InnateInfluenza A virusInfluenza, HumanInterferon-betaMaleMembrane GlycoproteinsMiceMonocytesMyxovirus Resistance ProteinsNeutrophilsOrthomyxoviridae InfectionsRespiratory Tract InfectionsToll-Like Receptor 7Viral LoadYoung AdultConceptsBacterial burdenAntiviral resistanceNeutrophil-dependent tissue damageMyD88-dependent signalingAntiviral interferon productionCaspase-1/11IAV diseaseViral loadInfluenza diseaseOlder humansTissue damageInterferon productionInflammasome responseOlder adultsTLR7Vivo consequencesDiseaseMiceIAVBurdenMx geneHumansMonocytesMortalityInfluenza
2015
Risk factors for West Nile virus infection and disease in populations and individuals
Montgomery RR, Murray KO. Risk factors for West Nile virus infection and disease in populations and individuals. Expert Review Of Anti-infective Therapy 2015, 13: 317-325. PMID: 25637260, PMCID: PMC4939899, DOI: 10.1586/14787210.2015.1007043.Peer-Reviewed Original ResearchConceptsWest Nile virusWest Nile virus infectionComplex immune interactionsRisk factorsAdvanced ageVirus infectionImmune responseSevere diseaseImmune interactionsClinical casesMosquito-borneCDC reportNile virusNaïve bird populationsInfectionDiseasePositive-strand RNA virusesRNA virusesVirusNew York CityHypertensionImmunosuppressionPopulationYork City
2012
West Nile Virus: Biology, Transmission, and Human Infection
Colpitts TM, Conway MJ, Montgomery RR, Fikrig E. West Nile Virus: Biology, Transmission, and Human Infection. Clinical Microbiology Reviews 2012, 25: 635-648. PMID: 23034323, PMCID: PMC3485754, DOI: 10.1128/cmr.00045-12.Peer-Reviewed Original Research
2006
Human Neutrophil Calprotectin Reduces the Susceptibility of Borrelia burgdorferi to Penicillin
Montgomery RR, Schreck K, Wang X, Malawista SE. Human Neutrophil Calprotectin Reduces the Susceptibility of Borrelia burgdorferi to Penicillin. Infection And Immunity 2006, 74: 2468-2472. PMID: 16552081, PMCID: PMC1418918, DOI: 10.1128/iai.74.4.2468-2472.2006.Peer-Reviewed Original ResearchConceptsClearance of spirochetesB. burgdorferiSites of inflammationTherapeutic dosesCalprotectinGrowth of spirochetesLeukocyte componentsNeutrophil calprotectinAntibiotic sensitivitySpirochetal agentLyme diseaseTherapeutic antibioticsBorrelia burgdorferiPenicillin GProtein calprotectinInflammationBurgdorferiSpirochetesDiseaseDoxycyclineDosesClearance
2004
Tick Saliva Reduces Adherence and Area of Human Neutrophils
Montgomery RR, Lusitani D, de Boisfleury Chevance A, Malawista SE. Tick Saliva Reduces Adherence and Area of Human Neutrophils. Infection And Immunity 2004, 72: 2989-2994. PMID: 15102811, PMCID: PMC387908, DOI: 10.1128/iai.72.5.2989-2994.2004.Peer-Reviewed Original Research
1994
Borrelia burgdorferi and the macrophage: Routine annihilation but occasional haven?
Montgomery RR, Malawista SE. Borrelia burgdorferi and the macrophage: Routine annihilation but occasional haven? Trends In Parasitology 1994, 10: 154-157. PMID: 15275485, DOI: 10.1016/0169-4758(94)90268-2.Peer-Reviewed Original Research