2022
Longitudinal serum proteomics analyses identify unique and overlapping host response pathways in Lyme disease and West Nile virus infection
Boada P, Fatou B, Belperron A, Sigdel T, Smolen K, Wurie Z, Levy O, Ronca S, Murray K, Liberto J, Rashmi P, Kerwin M, Montgomery R, Bockenstedt L, Steen H, Sarwal M. Longitudinal serum proteomics analyses identify unique and overlapping host response pathways in Lyme disease and West Nile virus infection. Frontiers In Immunology 2022, 13: 1012824. PMID: 36569838, PMCID: PMC9784464, DOI: 10.3389/fimmu.2022.1012824.Peer-Reviewed Original ResearchConceptsWest Nile virus infectionLyme diseaseVirus infectionWNV infectionSerum proteomeSymptomatic WNV infectionTime of diagnosisHealthy control seraDisseminated Lyme diseaseHost response pathwaysExtracellular bacterial infectionsSerum proteomic analysisIntracellular viral infectionsViral infectionHost responseBacterial infectionsControl seraStudy participantsInfectionDiseaseDisease biomarkersEarly diagnosticsLC/MSMolecular mechanismsRecovery phaseAnalytical Approaches to Uncover Genetic Associations for Rare Outcomes: Lessons from West Nile Neuroinvasive Disease
Cahill M, Montgomery R. Analytical Approaches to Uncover Genetic Associations for Rare Outcomes: Lessons from West Nile Neuroinvasive Disease. Methods In Molecular Biology 2022, 2585: 193-203. PMID: 36331775, PMCID: PMC9867870, DOI: 10.1007/978-1-0716-2760-0_17.Peer-Reviewed Original ResearchConceptsWest Nile neuroinvasive diseaseNeuroinvasive diseaseViral infectionWest Nile viral infectionSevere neuroinvasive diseaseMore severe outcomesGenetic factorsRare outcomesLimited cohort sizeSevere West Nile neuroinvasive diseaseWest Nile infectionVector-borne viral infectionSevere outcomesImmune responseSevere diseaseHigh riskFatal diseaseVaccine developmentInfectionDiseaseInfected humansWest NileSerious diseaseOutcomesCohort size
2017
The natural killer cell response to West Nile virus in young and old individuals with or without a prior history of infection
Yao Y, Strauss-Albee DM, Zhou JQ, Malawista A, Garcia MN, Murray KO, Blish CA, Montgomery RR. The natural killer cell response to West Nile virus in young and old individuals with or without a prior history of infection. PLOS ONE 2017, 12: e0172625. PMID: 28235099, PMCID: PMC5325267, DOI: 10.1371/journal.pone.0172625.Peer-Reviewed Original ResearchMeSH KeywordsAdultAge FactorsAgedAged, 80 and overAntigens, CDAsymptomatic DiseasesFemaleGene Expression RegulationHumansImmunity, InnateImmunophenotypingInterferon-gammaKiller Cells, NaturalLymphocyte ActivationLymphocyte CountMiddle AgedNatural Cytotoxicity Triggering Receptor 1Natural Cytotoxicity Triggering Receptor 2Natural Cytotoxicity Triggering Receptor 3NK Cell Lectin-Like Receptor Subfamily CNK Cell Lectin-Like Receptor Subfamily KPrimary Cell CultureSeverity of Illness IndexWest Nile FeverWest Nile virusConceptsNK cell subsetsNK cellsWest Nile virusWNV infectionCell subsetsCell responsesSpecific NK cell subsetsNatural killer cell responsesInnate NK cellsSevere neuroinvasive diseaseNK cell responsesNK cell receptorsNile virusHuman WNV infectionsImmune pathogenesisNK repertoirePolyfunctional responsesMore IFNSymptomatic infectionChemokine secretionAsymptomatic infectionNeuroinvasive diseasePrior historyCytolytic activityInfection
2016
Age-related alterations in immune responses to West Nile virus infection
Montgomery R. Age-related alterations in immune responses to West Nile virus infection. Clinical & Experimental Immunology 2016, 187: 26-34. PMID: 27612657, PMCID: PMC5167051, DOI: 10.1111/cei.12863.Peer-Reviewed Original ResearchConceptsWest Nile virusToll-like receptorsDendritic cellsSevere diseaseBlood-brain barrier permeabilityImportant public health concernWest Nile virus infectionHuman dendritic cellsNatural killer cellsAnti-viral responseMonocytes/macrophagesPathogen recognition receptorsAge-related alterationsSpecific immune parametersPublic health concernImportant causative agentAge-related impairmentIndividual host factorsAge-related changesKiller cellsViral encephalitisImmune cellsRisk factorsBarrier permeabilityHigh prevalenceRole of Immune Aging in Susceptibility to West Nile Virus
Yao Y, Montgomery RR. Role of Immune Aging in Susceptibility to West Nile Virus. Methods In Molecular Biology 2016, 1435: 235-247. PMID: 27188562, PMCID: PMC4941816, DOI: 10.1007/978-1-4939-3670-0_18.Peer-Reviewed Original ResearchConceptsWest Nile virusImmune dysregulationWNV infectionSevere neuroinvasive diseaseInnate immune cellsΓδ T cellsNile virusProminent risk factorAge-dependent dysregulationAge-related alterationsDendritic cellsNK cellsImmune agingNeuroinvasive diseaseImmune cellsRisk factorsT cellsImmune responseSpecific treatmentTherapeutic interventionsOlder peopleInfectionMass cytometryHost susceptibilityDysregulation
2015
Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing
Tsioris K, Gupta NT, Ogunniyi AO, Zimnisky RM, Qian F, Yao Y, Wang X, Stern JN, Chari R, Briggs AW, Clouser CR, Vigneault F, Church GM, Garcia MN, Murray KO, Montgomery RR, Kleinstein SH, Love JC. Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. Integrative Biology 2015, 7: 1587-1597. PMID: 26481611, PMCID: PMC4754972, DOI: 10.1039/c5ib00169b.Peer-Reviewed Original ResearchConceptsHumoral responseNext-generation sequencingB cellsWest Nile virus infectionSevere neurological illnessMemory B cellsAntibody-secreting cellsCohort of subjectsWNV-specific antibodiesHuman B cellsMosquito-borne diseaseWest Nile virusAnamnestic responseAntibody responseAvailable treatmentsClinical severityAntibody isotypesNeurological illnessVaccine studiesVirus infectionGeneration sequencingInfectious diseasesPrevious exposureTherapeutic antibodiesAntibodiesAssociation between high expression macrophage migration inhibitory factor (MIF) alleles and West Nile virus encephalitis
Das R, Loughran K, Murchison C, Qian F, Leng L, Song Y, Montgomery RR, Loeb M, Bucala R. Association between high expression macrophage migration inhibitory factor (MIF) alleles and West Nile virus encephalitis. Cytokine 2015, 78: 51-54. PMID: 26638028, PMCID: PMC4696904, DOI: 10.1016/j.cyto.2015.11.021.Peer-Reviewed Original ResearchConceptsMacrophage migration inhibitory factorWNV encephalitisWest Nile virusHigh-expression MIF allelesWest Nile virus encephalitisNeuroinvasive WNV diseaseCase-control studyMigration inhibitory factorNorth American patientsMIF locusWNV neuropathogenesisVirus encephalitisViral neuroinvasionInnate cytokinesMIF allelesAmerican patientsTherapeutic targetAnimal modelsWNV diseaseEncephalitisInhibitory factorFunctional polymorphismsPatientsNile virusImportant determinantRisk factors for West Nile virus infection and disease in populations and individuals
Montgomery RR, Murray KO. Risk factors for West Nile virus infection and disease in populations and individuals. Expert Review Of Anti-infective Therapy 2015, 13: 317-325. PMID: 25637260, PMCID: PMC4939899, DOI: 10.1586/14787210.2015.1007043.Peer-Reviewed Original ResearchConceptsWest Nile virusWest Nile virus infectionComplex immune interactionsRisk factorsAdvanced ageVirus infectionImmune responseSevere diseaseImmune interactionsClinical casesMosquito-borneCDC reportNile virusNaïve bird populationsInfectionDiseasePositive-strand RNA virusesRNA virusesVirusNew York CityHypertensionImmunosuppressionPopulationYork City
2014
Systems Immunology Reveals Markers of Susceptibility to West Nile Virus Infection
Qian F, Goel G, Meng H, Wang X, You F, Devine L, Raddassi K, Garcia MN, Murray KO, Bolen CR, Gaujoux R, Shen-Orr SS, Hafler D, Fikrig E, Xavier R, Kleinstein SH, Montgomery RR. Systems Immunology Reveals Markers of Susceptibility to West Nile Virus Infection. MSphere 2014, 22: 6-16. PMID: 25355795, PMCID: PMC4278927, DOI: 10.1128/cvi.00508-14.Peer-Reviewed Original ResearchConceptsWest Nile virus infectionVirus infectionMyeloid dendritic cellsMarker of susceptibilityPotential therapeutic strategySeverity of infectionSevere neurological diseaseOlder patientsAcute infectionDendritic cellsCXCL10 expressionDetectable yearsImmunity-related genesStratified cohortWNV infectionTherapeutic strategiesPathogenic mechanismsAnimal studiesNeurological diseasesDisease severityVivo infectionPredictive signatureInfectionProminent alterationsPrimary cellsImmune Markers Associated with Host Susceptibility to Infection with West Nile Virus
Qian F, Thakar J, Yuan X, Nolan M, Murray KO, Lee WT, Wong SJ, Meng H, Fikrig E, Kleinstein SH, Montgomery RR. Immune Markers Associated with Host Susceptibility to Infection with West Nile Virus. Viral Immunology 2014, 27: 39-47. PMID: 24605787, PMCID: PMC3949440, DOI: 10.1089/vim.2013.0074.Peer-Reviewed Original ResearchConceptsWest Nile virusSevere infectionsImmune markersIL-4IL-4 levelsSerum cytokine levelsSerum IL-4Nile virusSignificant risk factorsImmune system statusPeripheral blood cellsSevere neurological diseaseCytokine levelsAntibody levelsImmune statusRisk factorsHealthy subjectsStratified cohortWNV infectionNeurological diseasesInfectionAltered expression levelsBlood cellsAltered gene expression patternsHost susceptibility
2013
ELF4 is critical for induction of type I interferon and the host antiviral response
You F, Wang P, Yang L, Yang G, Zhao YO, Qian F, Walker W, Sutton R, Montgomery R, Lin R, Iwasaki A, Fikrig E. ELF4 is critical for induction of type I interferon and the host antiviral response. Nature Immunology 2013, 14: 1237-1246. PMID: 24185615, PMCID: PMC3939855, DOI: 10.1038/ni.2756.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCells, CulturedDNA-Binding ProteinsHEK293 CellsHeLa CellsHost-Pathogen InteractionsHumansImmunoblottingInterferon Regulatory Factor-3Interferon Regulatory Factor-7Interferon-betaMembrane ProteinsMiceMice, Inbred C57BLMice, KnockoutMicroscopy, ConfocalProtein BindingReverse Transcriptase Polymerase Chain ReactionRNA InterferenceSignal TransductionSurvival AnalysisTranscription FactorsTranscriptional ActivationWest Nile FeverWest Nile virusIdentification of Genes Critical for Resistance to Infection by West Nile Virus Using RNA-Seq Analysis
Qian F, Chung L, Zheng W, Bruno V, Alexander RP, Wang Z, Wang X, Kurscheid S, Zhao H, Fikrig E, Gerstein M, Snyder M, Montgomery RR. Identification of Genes Critical for Resistance to Infection by West Nile Virus Using RNA-Seq Analysis. Viruses 2013, 5: 1664-1681. PMID: 23881275, PMCID: PMC3738954, DOI: 10.3390/v5071664.Peer-Reviewed Original ResearchConceptsCommon gene pathwaysNovel cellular responsesDifferential gene expressionRNA-seq analysisWest Nile virusGene expression analysisPrimary human macrophagesGene isoformsHigh-throughput methodRNA-seqGene pathwaysExpression analysisGenes CriticalKnock-downGene expressionCellular responsesGene changesResistant individualsBiological settingsHuman macrophagesGenesCritical roleAvailable treatmentsHealthy donorsViral infection
2012
West Nile Virus: Biology, Transmission, and Human Infection
Colpitts TM, Conway MJ, Montgomery RR, Fikrig E. West Nile Virus: Biology, Transmission, and Human Infection. Clinical Microbiology Reviews 2012, 25: 635-648. PMID: 23034323, PMCID: PMC3485754, DOI: 10.1128/cmr.00045-12.Peer-Reviewed Original ResearchSemaphorin 7A Contributes to West Nile Virus Pathogenesis through TGF-β1/Smad6 Signaling
Sultana H, Neelakanta G, Foellmer HG, Montgomery RR, Anderson JF, Koski RA, Medzhitov RM, Fikrig E. Semaphorin 7A Contributes to West Nile Virus Pathogenesis through TGF-β1/Smad6 Signaling. The Journal Of Immunology 2012, 189: 3150-3158. PMID: 22896629, PMCID: PMC3496209, DOI: 10.4049/jimmunol.1201140.Peer-Reviewed Original ResearchConceptsRole of Sema7AWNV infectionSemaphorin 7ATGF-β1Lethal West Nile virus infectionViral pathogenesisBlood-brain barrier permeabilityWest Nile Virus PathogenesisWest Nile virus infectionMurine cortical neuronsPrimary human macrophagesViral burdenWNV pathogenesisCortical neuronsBarrier permeabilityFlaviviral infectionsVirus infectionVirus pathogenesisNervous systemImmune systemPathogenesisInfectionHuman macrophagesSema7AMiceIL-22 Signaling Contributes to West Nile Encephalitis Pathogenesis
Wang P, Bai F, Zenewicz LA, Dai J, Gate D, Cheng G, Yang L, Qian F, Yuan X, Montgomery RR, Flavell RA, Town T, Fikrig E. IL-22 Signaling Contributes to West Nile Encephalitis Pathogenesis. PLOS ONE 2012, 7: e44153. PMID: 22952908, PMCID: PMC3429482, DOI: 10.1371/journal.pone.0044153.Peer-Reviewed Original ResearchConceptsWild-type miceCentral nervous systemIL-22Viral loadNeutrophil migrationType miceWest Nile virus encephalitisSimilar viral loadsLethal WNV infectionIL-22 signalingHost immune responseWNV neuroinvasionVirus encephalitisCXCR2 ligandsLeukocyte infiltrateProinflammatory cytokinesChemokine receptorsImmune responseWNV infectionViral infectionNervous systemSignaling contributesExtracellular pathogensNon-redundant roleWT leukocytes
2011
Innate immune control of West Nile virus infection
Arjona A, Wang P, Montgomery RR, Fikrig E. Innate immune control of West Nile virus infection. Cellular Microbiology 2011, 13: 1648-1658. PMID: 21790942, PMCID: PMC3196381, DOI: 10.1111/j.1462-5822.2011.01649.x.Peer-Reviewed Original ResearchConceptsWest Nile virusWNV infectionAntiviral innate immune mechanismsLong-term neurologic sequelaeWest Nile virus infectionRe-emerging zoonotic pathogenInnate immune controlInnate immune mechanismsLife-threatening meningoencephalitisInnate immune systemNeurologic sequelaeImmune controlInflammatory mediatorsImmune mechanismsMammalian hostsVirus infectionCurrent evidenceViral infectionAntiviral effectorsImmune systemFlaviviridae familyAntiviral mechanismInfectionNile virusJAK-STAT
2009
IL-10 Signaling Blockade Controls Murine West Nile Virus Infection
Bai F, Town T, Qian F, Wang P, Kamanaka M, Connolly TM, Gate D, Montgomery RR, Flavell RA, Fikrig E. IL-10 Signaling Blockade Controls Murine West Nile Virus Infection. PLOS Pathogens 2009, 5: e1000610. PMID: 19816558, PMCID: PMC2749443, DOI: 10.1371/journal.ppat.1000610.Peer-Reviewed Original ResearchConceptsIL-10 signalingIL-10WNV infectionWest Nile virusIL-10-deficient miceWest Nile virus infectionImportant cellular sourceSignificant human morbidityRNA flavivirusWNV pathogenesisInterleukin-10Antiviral cytokinesEtiologic rolePharmacologic blockadeDeficient miceT cellsVirus infectionPharmacologic meansTherapeutic strategiesViral infectionCellular sourceInfectionHuman morbidityNile virusMiceFusion Loop Peptide of the West Nile Virus Envelope Protein Is Essential for Pathogenesis and Is Recognized by a Therapeutic Cross-Reactive Human Monoclonal Antibody
Sultana H, Foellmer HG, Neelakanta G, Oliphant T, Engle M, Ledizet M, Krishnan MN, Bonafé N, Anthony KG, Marasco WA, Kaplan P, Montgomery RR, Diamond MS, Koski RA, Fikrig E. Fusion Loop Peptide of the West Nile Virus Envelope Protein Is Essential for Pathogenesis and Is Recognized by a Therapeutic Cross-Reactive Human Monoclonal Antibody. The Journal Of Immunology 2009, 183: 650-660. PMID: 19535627, PMCID: PMC3690769, DOI: 10.4049/jimmunol.0900093.Peer-Reviewed Original ResearchConceptsWest Nile virus envelope proteinWest Nile virusVirus envelope proteinDengue virusCross-reactive human monoclonal antibodiesBlood-brain barrier permeabilityEnvelope proteinWest Nile virus infectionNeutralization escape variantsNile virusWest Nile encephalitisNeutralization escape mutantsHuman monoclonal antibodyFatal neurological diseaseParental West Nile virusFusion loopEscape variantsInflammatory responseBarrier permeabilityLethal encephalitisMAb11Virus infectionHuman mAbsEscape mutantsNeurological diseases
2008
RNA interference screen for human genes associated with West Nile virus infection
Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, Sultana H, Brass AL, Adametz R, Tsui M, Qian F, Montgomery RR, Lev S, Mason PW, Koski RA, Elledge SJ, Xavier RJ, Agaisse H, Fikrig E. RNA interference screen for human genes associated with West Nile virus infection. Nature 2008, 455: 242-245. PMID: 18690214, PMCID: PMC3136529, DOI: 10.1038/nature07207.Peer-Reviewed Original ResearchMeSH KeywordsComputational BiologyDengue VirusEndoplasmic ReticulumGene Expression ProfilingGenome, HumanHeLa CellsHIVHumansImmunityMonocarboxylic Acid TransportersMuscle ProteinsProtein BindingRNA InterferenceUbiquitin-Protein LigasesUbiquitinationVesiculovirusVirus ReplicationWest Nile FeverWest Nile virusMatrix Metalloproteinase 9 Facilitates West Nile Virus Entry into the Brain
Wang P, Dai J, Bai F, Kong KF, Wong SJ, Montgomery RR, Madri JA, Fikrig E. Matrix Metalloproteinase 9 Facilitates West Nile Virus Entry into the Brain. Journal Of Virology 2008, 82: 8978-8985. PMID: 18632868, PMCID: PMC2546894, DOI: 10.1128/jvi.00314-08.Peer-Reviewed Original ResearchConceptsMatrix metalloproteinase-9Blood-brain barrierWest Nile virusWNV entryMetalloproteinase-9MMP9 expressionWNV infectionIntact blood-brain barrierBlood-brain barrier permeabilityBrain viral loadWest Nile virus entryEvans blue leakageMosquito-borne encephalitisWest Nile encephalitisLethal WNV challengeWild-type miceCentral nervous systemType IV collagen degradationPeripheral viremiaViral loadLeukocyte infiltrateInflammatory cytokinesLikely multifactorialBarrier permeabilityHost cytokines