2020
Single cell immune profiling of dengue virus patients reveals intact immune responses to Zika virus with enrichment of innate immune signatures
Zhao Y, Amodio M, Vander Wyk B, Gerritsen B, Kumar MM, van Dijk D, Moon K, Wang X, Malawista A, Richards MM, Cahill ME, Desai A, Sivadasan J, Venkataswamy MM, Ravi V, Fikrig E, Kumar P, Kleinstein SH, Krishnaswamy S, Montgomery RR. Single cell immune profiling of dengue virus patients reveals intact immune responses to Zika virus with enrichment of innate immune signatures. PLOS Neglected Tropical Diseases 2020, 14: e0008112. PMID: 32150565, PMCID: PMC7082063, DOI: 10.1371/journal.pntd.0008112.Peer-Reviewed Original ResearchConceptsZika virusCell subsetsDengue virusConcurrent dengue infectionInnate cell responsesInnate immune signaturesVirus-infected individualsDivergent clinical outcomesMosquito-borne human pathogenIntact immune responsePre-existing infectionInnate cell typesSingle-cell immune profilingPublic health importanceCell typesImmune signaturesVirus patientsWest Nile virusAcute patientsClinical outcomesImmune profilingDengue infectionImmune statusFunctional statusImmune cells
2019
Multi‐site reproducibility of a human immunophenotyping assay in whole blood and peripheral blood mononuclear cells preparations using CyTOF technology coupled with Maxpar Pathsetter, an automated data analysis system
Bagwell CB, Hunsberger B, Hill B, Herbert D, Bray C, Selvanantham T, Li S, Villasboas JC, Pavelko K, Strausbauch M, Rahman A, Kelly G, Asgharzadeh S, Gomez‐Cabrero A, Behbehani G, Chang H, Lyberger J, Montgomery R, Zhao Y, Inokuma M, Goldberger O, Stelzer G. Multi‐site reproducibility of a human immunophenotyping assay in whole blood and peripheral blood mononuclear cells preparations using CyTOF technology coupled with Maxpar Pathsetter, an automated data analysis system. Cytometry Part B Clinical Cytometry 2019, 98: 146-160. PMID: 31758746, PMCID: PMC7543682, DOI: 10.1002/cyto.b.21858.Peer-Reviewed Original ResearchConceptsPeripheral blood mononuclear cellsWhole bloodPeripheral blood mononuclear cell preparationsDeep immune phenotypingBlood mononuclear cellsImmune cell populationsMononuclear cell preparationsCell populationsTranslational clinical researchWhole blood preparationsImmune phenotypingMononuclear cellsPBMC samplesClinical trialsImmune cellsClinical researchCyTOF technologyBlood preparationsInter-site reproducibilityBloodCell preparationsSingle donorMulti-site reproducibilityCellsProfiling assaysA Modified Injector and Sample Acquisition Protocol Can Improve Data Quality and Reduce Inter‐Instrument Variability of the Helios Mass Cytometer
Lee BH, Kelly G, Bradford S, Davila M, Guo XV, Amir E, Thrash EM, Solga MD, Lannigan J, Sellers B, Candia J, Tsang J, Montgomery RR, Tamaki SJ, Sigdel TK, Sarwal MM, Lanier LL, Tian Y, Kim C, Hinz D, Peters B, Sette A, Rahman AH. A Modified Injector and Sample Acquisition Protocol Can Improve Data Quality and Reduce Inter‐Instrument Variability of the Helios Mass Cytometer. Cytometry Part A 2019, 95: 1019-1030. PMID: 31364278, PMCID: PMC6750971, DOI: 10.1002/cyto.a.23866.Peer-Reviewed Original ResearchDissecting alterations in human CD8+ T cells with aging by high-dimensional single cell mass cytometry
Shin MS, Yim K, Moon K, Park HJ, Mohanty S, Kim JW, Montgomery RR, Shaw AC, Krishnaswamy S, Kang I. Dissecting alterations in human CD8+ T cells with aging by high-dimensional single cell mass cytometry. Clinical Immunology 2019, 200: 24-30. PMID: 30659916, PMCID: PMC6443094, DOI: 10.1016/j.clim.2019.01.005.Peer-Reviewed Original Research
2017
Gating mass cytometry data by deep learning
Li H, Shaham U, Stanton KP, Yao Y, Montgomery RR, Kluger Y. Gating mass cytometry data by deep learning. Bioinformatics 2017, 33: 3423-3430. PMID: 29036374, PMCID: PMC5860171, DOI: 10.1093/bioinformatics/btx448.Peer-Reviewed Original ResearchMultiparameter Single Cell Profiling of Airway Inflammatory Cells
Yao Y, Welp T, Liu Q, Niu N, Wang X, Britto CJ, Krishnaswamy S, Chupp G, Montgomery RR. Multiparameter Single Cell Profiling of Airway Inflammatory Cells. Cytometry Part B Clinical Cytometry 2017, 92: 12-20. PMID: 27807928, PMCID: PMC5250532, DOI: 10.1002/cyto.b.21491.Peer-Reviewed Original ResearchConceptsSingle-cell methodsComplex trait diseasesSubgroup of asthmaticsSingle-cell analysisMultiparameter single cell analysisMillions of patientsTranscriptional analysisImmunologic underpinningsInduced sputumAirway diseaseAsthmatic patientsAirway samplesCell subsetsImmune statusFunctional statusClinical severityDistinct biologic mechanismsTreatment successPhysiologic manifestationsBiologic mechanismsCystic fibrosisCellular analysisPatientsCytometry studiesU.S. population
2016
Cathelicidin Insufficiency in Patients with Fatal Leptospirosis
Lindow JC, Wunder EA, Popper SJ, Min JN, Mannam P, Srivastava A, Yao Y, Hacker KP, Raddassi K, Lee PJ, Montgomery RR, Shaw AC, Hagan JE, Araújo GC, Nery N, Relman DA, Kim CC, Reis MG, Ko AI. Cathelicidin Insufficiency in Patients with Fatal Leptospirosis. PLOS Pathogens 2016, 12: e1005943. PMID: 27812211, PMCID: PMC5094754, DOI: 10.1371/journal.ppat.1005943.Peer-Reviewed Original ResearchConceptsHost immune responseHigh bacterial loadBacterial loadAcute leptospirosisCase fatalityFatal casesDisease progressionImmune responseHigher systemic bacterial loadsValuable new therapeutic approachPro-inflammatory cytokine receptorsAdaptive immune signaturesSystemic bacterial loadsIndependent risk factorTime of hospitalizationDuration of illnessHigh case fatalityPoor clinical outcomeNew therapeutic approachesBlood transcriptional profilingLimited study sizeFatal leptospirosisLethal leptospirosisRANTES levelsSerum cathelicidinHigh standards for high dimensional investigations
Montgomery RR. High standards for high dimensional investigations. Cytometry Part A 2016, 89: 886-888. PMID: 27662608, PMCID: PMC5123846, DOI: 10.1002/cyto.a.22992.Peer-Reviewed Original ResearchFlow CytometryReference Standards
2015
Imaging Immunosenescence
Qian F, Montgomery RR. Imaging Immunosenescence. Methods In Molecular Biology 2015, 1343: 97-106. PMID: 26420711, PMCID: PMC4955385, DOI: 10.1007/978-1-4939-2963-4_8.Peer-Reviewed Original Research
2014
IL-6 Receptor α Defines Effector Memory CD8+ T Cells Producing Th2 Cytokines and Expanding in Asthma
Lee N, You S, Shin MS, Lee WW, Kang KS, Kim SH, Kim WU, Homer RJ, Kang MJ, Montgomery RR, Dela Cruz CS, Shaw AC, Lee PJ, Chupp GL, Hwang D, Kang I. IL-6 Receptor α Defines Effector Memory CD8+ T Cells Producing Th2 Cytokines and Expanding in Asthma. American Journal Of Respiratory And Critical Care Medicine 2014, 190: 1383-1394. PMID: 25390970, PMCID: PMC4299645, DOI: 10.1164/rccm.201403-0601oc.Peer-Reviewed Original ResearchConceptsEffector memory CD8EM CD8T cellsPeripheral bloodMemory CD8IL-13IL-5IL-6RαTh2-type cytokine IL-5Different T cell subsetsLevels of GATA3Frequency of ILT cell subsetsTh2-type cytokinesHealthy control subjectsRespiratory syncytial virusT cell populationsCytokines IL-5IL-6 receptor αIL-6Rα expressionHuman peripheral bloodEffector CD8Syncytial virusTh2 cytokinesCell subsetsCyTOF supports efficient detection of immune cell subsets from small samples
Yao Y, Liu R, Shin MS, Trentalange M, Allore H, Nassar A, Kang I, Pober JS, Montgomery RR. CyTOF supports efficient detection of immune cell subsets from small samples. Journal Of Immunological Methods 2014, 415: 1-5. PMID: 25450003, PMCID: PMC4269324, DOI: 10.1016/j.jim.2014.10.010.Peer-Reviewed Original ResearchConceptsImmune cell subsetsCell subsetsImmune cell statesPatient biopsiesTranslational investigationsFlow cytometryClinical researchCellular analysisMass cytometryMultiple cell populationsCell populationsCytometryCyTOFSingle-cell analysisMultiparameter single cell analysisFluorescence cytometryFluorescence-based flow cytometryCell statesHuman diseasesMarkersTremendous detailBiopsyPathogenesisChitinase 3–Like 1 Suppresses Injury and Promotes Fibroproliferative Responses in Mammalian Lung Fibrosis
Zhou Y, Peng H, Sun H, Peng X, Tang C, Gan Y, Chen X, Mathur A, Hu B, Slade MD, Montgomery RR, Shaw AC, Homer RJ, White ES, Lee CM, Moore MW, Gulati M, Lee CG, Elias JA, Herzog EL. Chitinase 3–Like 1 Suppresses Injury and Promotes Fibroproliferative Responses in Mammalian Lung Fibrosis. Science Translational Medicine 2014, 6: 240ra76. PMID: 24920662, PMCID: PMC4340473, DOI: 10.1126/scitranslmed.3007096.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisCHI3L1 levelsChitinase 3Lungs of patientsAlternative macrophage activationLevel of apoptosisAcute exacerbationFibroproliferative repairLung transplantationDisease exacerbationInjury phaseAmbulatory patientsEpithelial injuryPulmonary fibrosisIPF populationLung fibrosisMacrophage accumulationCHI3L1 expressionFibrotic phaseDisease progressionProfibrotic roleFibroproliferative responseMacrophage activationMyofibroblast transformationProtective role
2012
Quantitative imaging of lineage-specific Toll-like receptor-mediated signaling in monocytes and dendritic cells from small samples of human blood.
Qian F, Montgomery RR. Quantitative imaging of lineage-specific Toll-like receptor-mediated signaling in monocytes and dendritic cells from small samples of human blood. Journal Of Visualized Experiments 2012 PMID: 22525943, PMCID: PMC3466655, DOI: 10.3791/3741.Peer-Reviewed Original ResearchConceptsToll-like receptorsDendritic cellsImmune responseToll-like receptor-mediated signalingCell-mediated immune responsesCertain Toll-like receptorsAntigen-presenting cellsPeripheral blood monocytesHealthy human donorsNF-κB pathwayInnate immune systemReceptor-mediated signalingQuantitative flow cytometryTLR levelsWest Nile virusPatient susceptibilityUnderstanding of immunosenescenceImmune responsivenessElderly donorsLarge cohortOlder donorsAdaptive immunityBlood monocytesNF-κBTherapeutic interventions
2010
Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype
Mathai SK, Gulati M, Peng X, Russell TR, Shaw AC, Rubinowitz AN, Murray LA, Siner JM, Antin-Ozerkis DE, Montgomery RR, Reilkoff RA, Bucala RJ, Herzog EL. Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Laboratory Investigation 2010, 90: 812-823. PMID: 20404807, PMCID: PMC3682419, DOI: 10.1038/labinvest.2010.73.Peer-Reviewed Original ResearchConceptsInterstitial lung diseaseSSc-ILD patientsSSc-ILDIL-10Normal controlsProfibrotic cellsSystemic sclerosisLung diseaseCollagen-producing cellsMCP-1Profibrotic phenotypeSSc-related interstitial lung diseaseFlow cytometryPeripheral blood profilesSSc-ILD cohortsIL-10 secretionSystemic sclerosis patientsExpression of CD163Blood of patientsHealthy aged controlsCultured CD14Profibrotic characteristicsProfibrotic mediatorsTNF levelsSclerosis patientsAge-Associated Decrease in TLR Function in Primary Human Dendritic Cells Predicts Influenza Vaccine Response
Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L, Chen S, Towle V, Belshe RB, Fikrig E, Allore HG, Montgomery RR, Shaw AC. Age-Associated Decrease in TLR Function in Primary Human Dendritic Cells Predicts Influenza Vaccine Response. The Journal Of Immunology 2010, 184: 2518-2527. PMID: 20100933, PMCID: PMC3867271, DOI: 10.4049/jimmunol.0901022.Peer-Reviewed Original ResearchMeSH KeywordsAdultAge FactorsAgedAged, 80 and overAntibodies, ViralCytokinesDendritic CellsFemaleFlow CytometryHumansInfluenza A Virus, H1N1 SubtypeInfluenza VaccinesInterleukin-12 Subunit p40Interleukin-6Linear ModelsMaleMiddle AgedReverse Transcriptase Polymerase Chain ReactionToll-Like ReceptorsTumor Necrosis Factor-alphaYoung AdultConceptsPrimary human dendritic cellsDendritic cellsHuman dendritic cellsMyeloid DCsPlasmacytoid DCsCytokine productionTLR functionTNF-alphaIntracellular cytokine productionPoor Ab responsesInfluenza vaccine responsesMyeloid dendritic cellsPlasmacytoid dendritic cellsYoung individualsIntracellular cytokine stainingIL-12 productionIFN-alpha productionTLR ligand stimulationTLR gene expressionInnate immune responseAge-Associated DecreaseTLR8 engagementInfluenza immunizationAge-associated effectsCytokine staining