2020
Shelterin and the replisome: at the intersection of telomere repair and replication
Cicconi A, Chang S. Shelterin and the replisome: at the intersection of telomere repair and replication. Current Opinion In Genetics & Development 2020, 60: 77-84. PMID: 32171974, DOI: 10.1016/j.gde.2020.02.016.Peer-Reviewed Original ResearchMeSH KeywordsDNA DamageDNA RepairDNA ReplicationGenomic InstabilityHumansNeoplasmsShelterin ComplexTelomereTelomere-Binding Proteins
2017
Structural insights into POT1-TPP1 interaction and POT1 C-terminal mutations in human cancer
Chen C, Gu P, Wu J, Chen X, Niu S, Sun H, Wu L, Li N, Peng J, Shi S, Fan C, Huang M, Wong CC, Gong Q, Kumar-Sinha C, Zhang R, Pusztai L, Rai R, Chang S, Lei M. Structural insights into POT1-TPP1 interaction and POT1 C-terminal mutations in human cancer. Nature Communications 2017, 8: 14929. PMID: 28393832, PMCID: PMC5394241, DOI: 10.1038/ncomms14929.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsConserved SequenceDNA DamageDNA Mutational AnalysisDNA RepairGenomic InstabilityHumansMiceModels, MolecularMolecular ChaperonesMutationNeoplasmsPhosphoproteinsProstaglandin-E SynthasesProtein BindingProtein Structure, SecondaryScattering, Small AngleShelterin ComplexStructure-Activity RelationshipTelomere-Binding ProteinsX-Ray DiffractionConceptsTelomerase-mediated telomere extensionHuman cancersDNA damage responseC-terminal mutationsOB foldsHuman POT1Chromosome endsGenome instabilityPOT1-TPP1Telomere extensionDamage responseStable heterodimerA-NHEJStructural insightsC-terminusInappropriate repairTPP1POT1Heart-shaped structureMissense mutationsTerminal portionMutationsDomainMutantsTelomeresCytogenetic Analysis of Telomere Dysfunction
Rai R, Multani AS, Chang S. Cytogenetic Analysis of Telomere Dysfunction. Methods In Molecular Biology 2017, 1587: 127-131. PMID: 28324504, DOI: 10.1007/978-1-4939-6892-3_12.Peer-Reviewed Original Research
2016
TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions
Rai R, Chen Y, Lei M, Chang S. TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nature Communications 2016, 7: 10881. PMID: 26941064, PMCID: PMC4785230, DOI: 10.1038/ncomms10881.Peer-Reviewed Original ResearchConceptsRepressor/activator protein 1Telomere length controlTranscriptional gene regulationRepair of telomeresTelomere end protectionNon-homologous endActivator protein-1Myb domainChromosome fusionsYeast Rap1Gene regulationHDR pathwayEnd protectionBasic domainTelomere lossTelomeresHuman cellsHR factorsProtein 1Length controlPARP1Free fusionInappropriate processingTRF2Important role
2013
The mINO80 chromatin remodeling complex is required for efficient telomere replication and maintenance of genome stability
Min JN, Tian Y, Xiao Y, Wu L, Li L, Chang S. The mINO80 chromatin remodeling complex is required for efficient telomere replication and maintenance of genome stability. Cell Research 2013, 23: 1396-1413. PMID: 23979016, PMCID: PMC3847565, DOI: 10.1038/cr.2013.113.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAnimalsCells, CulturedCellular SenescenceChromatinChromatin Assembly and DisassemblyDNA Breaks, Double-StrandedDNA HelicasesDNA RepairDNA ReplicationFibroblastsGenomic InstabilityHydroxyureaMiceMice, Inbred C57BLMice, KnockoutMutationNucleic Acid Synthesis InhibitorsTelomereTumor Suppressor Protein p53ConceptsHomology-directed DNA repairEfficient telomere replicationGenome stabilityTelomere replicationDependent DNA damage responseDNA double-strand breaksDNA damage responseDNA damage fociMammalian cell linesATPase catalytic subunitConditional knockout approachDouble-strand breaksINO80 chromatinChromatin remodelingOrganismal functionTranscriptional regulationFragile telomeresDamage responseDNA replicationCatalytic subunitDamage fociDysfunctional telomeresSingle-strand DNADNA repairKnockout approachSingle strand DNA binding proteins 1 and 2 protect newly replicated telomeres
Gu P, Deng W, Lei M, Chang S. Single strand DNA binding proteins 1 and 2 protect newly replicated telomeres. Cell Research 2013, 23: 705-719. PMID: 23459151, PMCID: PMC3641597, DOI: 10.1038/cr.2013.31.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAnimalsCell LineChromatidsDNA DamageDNA RepairDNA-Binding ProteinsDNA, Single-StrandedGenomic InstabilityHumansMiceMice, KnockoutMitochondrial ProteinsProtein BindingRadiation, IonizingRNA InterferenceRNA, Small InterferingShelterin ComplexTelomereTelomere-Binding ProteinsTelomeric Repeat Binding Protein 2ConceptsGenome stabilitySingle-strand DNAHeterotrimeric protein complexDNA damage responseTelomere end protectionProtein 1Subset of telomeresTelomeric ssDNAProtein complexesTelomeric DNADamage responseG-overhangsEnd protectionConditional knockout miceTelomeresΔ miceDNAPOT1aDevelopmental abnormalitiesStrand DNACritical roleKnockout miceINTS3F allelePOT1b
2011
The RAG2 C terminus suppresses genomic instability and lymphomagenesis
Deriano L, Chaumeil J, Coussens M, Multani A, Chou Y, Alekseyenko AV, Chang S, Skok JA, Roth DB. The RAG2 C terminus suppresses genomic instability and lymphomagenesis. Nature 2011, 471: 119-123. PMID: 21368836, PMCID: PMC3174233, DOI: 10.1038/nature09755.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtaxia Telangiectasia Mutated ProteinsCell Cycle ProteinsChromosome DeletionChromosomes, MammalianDisease ProgressionDNA-Binding ProteinsGene Rearrangement, T-LymphocyteGenes, Immunoglobulin Heavy ChainGenes, p53Genomic InstabilityIn Situ Hybridization, FluorescenceKaplan-Meier EstimateLymphomaMiceProtein Serine-Threonine KinasesReceptors, Antigen, T-CellRecombination, GeneticThymus GlandTranslocation, GeneticTumor Suppressor ProteinsConceptsRAG2 C terminusGenomic instabilityC-terminusTCRα/δDNA double-strand breaksT-cell receptor lociDouble-strand breaksGenomic stabilityComplex chromosomal translocationReceptor locusChromosomal translocationsSimilar defectsLymphomagenesisThymic lymphomasTerminusLociRecombinaseTailRAG2TranslocationDeletionRecombinationRoleLymphoid malignanciesMice
2010
The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development
Akhter S, Lam YC, Chang S, Legerski RJ. The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development. Aging Cell 2010, 9: 1047-1056. PMID: 20854421, PMCID: PMC3719988, DOI: 10.1111/j.1474-9726.2010.00631.x.Peer-Reviewed Original ResearchConceptsMutant mouse embryonic fibroblastsSNM1B/ApolloCell proliferation defectMouse embryonic fibroblastsNormal cell proliferationDevelopmental failureHomozygous null miceEnd fusionsProliferation defectEmbryonic developmentGenomic instabilityEmbryonic fibroblastsTelomeric endDevelopmental defectsCell deathVivo roleCell proliferationImpaired proliferationTelomeresNull miceMutant miceAurora Kinase A Promotes Ovarian Tumorigenesis through Dysregulation of the Cell Cycle and Suppression of BRCA2
Yang G, Chang B, Yang F, Guo X, Cai K, Xiao X, Wang H, Sen S, Hung M, Mills G, Chang S, Multani A, Mercado-Uribe I, Liu J. Aurora Kinase A Promotes Ovarian Tumorigenesis through Dysregulation of the Cell Cycle and Suppression of BRCA2. Clinical Cancer Research 2010, 16: 3171-3181. PMID: 20423983, PMCID: PMC2930838, DOI: 10.1158/1078-0432.ccr-09-3171.Peer-Reviewed Original ResearchConceptsDNA damage responseGenomic instabilitySmall hairpin RNADamage responseExpression ratioCell cycle progressionOvarian cancer cell line SKOV3Multiple human cancersColon cancer samplesKnockdown of AuroraCell cycle alterationsMitotic spindleCell cycle dysregulationCell line SKOV3Cycle progressionExpression of AuroraMolecular mechanismsCell cycleAurora kinasesHairpin RNATumor growthCentrosome amplificationHuman cancersHuman ovarian cancerHigh-grade ovarian serous carcinomaBRIT1/MCPH1 Is Essential for Mitotic and Meiotic Recombination DNA Repair and Maintaining Genomic Stability in Mice
Liang Y, Gao H, Lin S, Peng G, Huang X, Zhang P, Goss J, Brunicardi F, Multani A, Chang S, Li K. BRIT1/MCPH1 Is Essential for Mitotic and Meiotic Recombination DNA Repair and Maintaining Genomic Stability in Mice. PLOS Genetics 2010, 6: e1000826. PMID: 20107607, PMCID: PMC2809772, DOI: 10.1371/journal.pgen.1000826.Peer-Reviewed Original ResearchConceptsMouse embryonic fibroblastsDNA double-strand breaksDNA repairGenomic stabilityDNA damage response pathwayBRIT1/MCPH1Meiotic homologous recombinationDNA damage signalingDamage response pathwayRecruitment of RAD51Localization of RAD51Novel key regulatorRAD51 foci formationDouble-strand breaksIrradiation-induced DNA damagePrimary microcephaly patientsBRCT domainMutant spermatocytesBRCA2 complexMCPH1 functionDamage signalingMeiotic chromosomesChromosomal synapsisProphase IResponse pathways
2008
Mre11 Nuclease Activity Has Essential Roles in DNA Repair and Genomic Stability Distinct from ATM Activation
Buis J, Wu Y, Deng Y, Leddon J, Westfield G, Eckersdorff M, Sekiguchi JM, Chang S, Ferguson DO. Mre11 Nuclease Activity Has Essential Roles in DNA Repair and Genomic Stability Distinct from ATM Activation. Cell 2008, 135: 85-96. PMID: 18854157, PMCID: PMC2645868, DOI: 10.1016/j.cell.2008.08.015.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAtaxia Telangiectasia Mutated ProteinsCell Cycle ProteinsCell Line, TransformedCell ProliferationDNA Breaks, Double-StrandedDNA DamageDNA RepairDNA Repair EnzymesDNA-Binding ProteinsFibroblastsGenomic InstabilityMiceMRE11 Homologue ProteinProtein Serine-Threonine KinasesRecombination, GeneticTelomereTumor Suppressor ProteinsConceptsMre11/Rad50/Nbs1Nuclease activityDNA repairDNA damageDramatic genomic instabilityFunctions of Mre11Early embryonic lethalityMre11 nuclease activityATM kinaseATR kinaseEmbryonic lethalityGenomic stabilityATM activationMRN complexNucleolytic processingBreak repairDNA endsATM signalingMouse alleleGenomic instabilityDNA nuclease activityNuclease deficienciesEssential functionsUnknown roleMre11Control of chromosome stability by the β-TrCP–REST–Mad2 axis
Guardavaccaro D, Frescas D, Dorrello NV, Peschiaroli A, Multani AS, Cardozo T, Lasorella A, Iavarone A, Chang S, Hernando E, Pagano M. Control of chromosome stability by the β-TrCP–REST–Mad2 axis. Nature 2008, 452: 365-369. PMID: 18354482, PMCID: PMC2707768, DOI: 10.1038/nature06641.Peer-Reviewed Original ResearchMeSH KeywordsBeta-Transducin Repeat-Containing ProteinsCalcium-Binding ProteinsCell Cycle ProteinsCell LineChromosomal InstabilityG2 PhaseGene Expression RegulationGenomic InstabilityHumansMad2 ProteinsMitosisProtein BindingRepressor ProteinsSKP Cullin F-Box Protein LigasesSpindle ApparatusTranscription Factors
2007
Role of telomeres and telomerase in genomic instability, senescence and cancer
Deng Y, Chang S. Role of telomeres and telomerase in genomic instability, senescence and cancer. Laboratory Investigation 2007, 87: 1071-1076. PMID: 17767195, DOI: 10.1038/labinvest.3700673.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Transformation, NeoplasticCellular SenescenceGenomic InstabilityHumansNeoplasmsTelomeraseTelomereConceptsHuman cancersAnti-telomerase therapyAttractive therapeutic targetClinical trialsTherapeutic targetDNA damage responseRole of telomeresAbsence of p53Progressive lossHuman carcinomasSuppress tumorigenesisCancerLinear chromosomesCellular senescenceDamage responseTelomeric repeatsDysfunctional telomeresGenomic instabilityTelomeric structureChromosomal instabilityTelomeresP53TelomeraseImportant mechanismFunction results
2006
Pot1 Deficiency Initiates DNA Damage Checkpoint Activation and Aberrant Homologous Recombination at Telomeres
Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y, Deng JM, Bachilo O, Pathak S, Tahara H, Bailey SM, Deng Y, Behringer RR, Chang S. Pot1 Deficiency Initiates DNA Damage Checkpoint Activation and Aberrant Homologous Recombination at Telomeres. Cell 2006, 126: 49-62. PMID: 16839876, DOI: 10.1016/j.cell.2006.05.037.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Cycle ProteinsCells, CulturedCellular SenescenceChromosome AberrationsDNA DamageDNA RepairDNA-Binding ProteinsGene SilencingGenes, cdcGenomic InstabilityMiceMice, KnockoutNuclear ProteinsProtein IsoformsRecombination, GeneticSequence HomologyShelterin ComplexSister Chromatid ExchangeTelomereTelomere-Binding ProteinsConceptsAberrant homologous recombinationHomologous recombinationTelomere sister chromatid exchangeDNA damage checkpoint activationOverall genomic stabilityTelomere length regulationDNA damage machineryDNA damage responseT-loop structureChromosomal end protectionMammalian telomeresPOT1 proteinsTelomere integrityCheckpoint activationGenomic stabilityLength regulationMouse genomeDamage responseEnd protectionReplicative senescenceDNA breaksRich overhangTelomeresChromosomal instabilityConditional deletion
2004
Tumor-Specific Low Molecular Weight Forms of Cyclin E Induce Genomic Instability and Resistance to p21, p27, and Antiestrogens in Breast Cancer
Akli S, Zheng PJ, Multani AS, Wingate HF, Pathak S, Zhang N, Tucker SL, Chang S, Keyomarsi K. Tumor-Specific Low Molecular Weight Forms of Cyclin E Induce Genomic Instability and Resistance to p21, p27, and Antiestrogens in Breast Cancer. Cancer Research 2004, 64: 3198-3208. PMID: 15126360, DOI: 10.1158/0008-5472.can-03-3672.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAnimalsBreast NeoplasmsCDC2-CDC28 KinasesCell Cycle ProteinsCell DivisionCell Line, TumorCyclin ECyclin-Dependent Kinase 2Cyclin-Dependent Kinase Inhibitor p21Cyclin-Dependent Kinase Inhibitor p27CyclinsEstradiolEstrogen Receptor ModulatorsFemaleFulvestrantG1 PhaseGenomic InstabilityHumansMiddle AgedMolecular WeightPolyploidyProtein IsoformsTransfectionTumor Suppressor ProteinsConceptsBreast cancer patientsPoor outcomeCancer patientsBreast cancerCyclin ELMW formsPoor clinical outcomeEffects of antiestrogensPotential therapeutic targetLow molecular weight isoformsCyclin-dependent kinase inhibitor p21Clinical outcomesAggressive diseaseSurrogate markerDisease progressionPathobiological mechanismsTherapeutic targetMolecular weight isoformsPatientsTumor cellsLMW isoformsTumorsPowerful predictorLow molecular weight formWeight isoforms