2022
Dataset on acute stroke risk stratification from CT angiographic radiomics
Avery EW, Behland J, Mak A, Haider SP, Zeevi T, Sanelli PC, Filippi CG, Malhotra A, Matouk CC, Griessenauer CJ, Zand R, Hendrix P, Abedi V, Falcone GJ, Petersen N, Sansing LH, Sheth KN, Payabvash S. Dataset on acute stroke risk stratification from CT angiographic radiomics. Data In Brief 2022, 44: 108542. PMID: 36060820, PMCID: PMC9428796, DOI: 10.1016/j.dib.2022.108542.Peer-Reviewed Original ResearchMachine Learning FrameworkImage processing technologyFeature selection algorithmField of radiomicsRadiomics-based analysisMachine learningMedical imagesSelection algorithmAssistance toolRadiomic featuresRadiomics dataProcessing technologyAnalysis frameworkRelevant informationRadiomics algorithmAlgorithmCT angiography imagesRadiomicsMethodological supportExternal testingFrameworkImagesAngiography imagesMachineFeaturesMachine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis
Bahar RC, Merkaj S, Petersen G, Tillmanns N, Subramanian H, Brim WR, Zeevi T, Staib L, Kazarian E, Lin M, Bousabarah K, Huttner AJ, Pala A, Payabvash S, Ivanidze J, Cui J, Malhotra A, Aboian MS. Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis. Frontiers In Oncology 2022, 12: 856231. PMID: 35530302, PMCID: PMC9076130, DOI: 10.3389/fonc.2022.856231.Peer-Reviewed Original ResearchMachine learning modelsLearning modelConvolutional neural networkDeep learning studiesLarge training datasetsGrade predictionSupport vector machineApplication of MLNeural networkConventional machineVector machineTraining datasetBest performing modelCommon algorithmsModel performanceEssential metricMean prediction accuracyHigh predictive accuracyPrediction accuracyPerforming modelMachinePrediction modelDiagnosis statementsAccuracy statementsLearning studiesBrain Tumor Imaging: Applications of Artificial Intelligence
Afridi M, Jain A, Aboian M, Payabvash S. Brain Tumor Imaging: Applications of Artificial Intelligence. Seminars In Ultrasound CT And MRI 2022, 43: 153-169. PMID: 35339256, PMCID: PMC8961005, DOI: 10.1053/j.sult.2022.02.005.Peer-Reviewed Original ResearchConceptsArtificial intelligenceDeep learning systemDeep learning-based artificial intelligenceMachine learningImage processingLearning systemIntelligencePopular fieldDecision-making processPredictive modelRadiomic featuresNeuro-oncologyDecision-making protocolClinical decision-making protocolsMachineClinical decision-making processLearningBrain tumor imagingFeaturesClassificationImaging featuresProcessingTreatment responseMolecular classificationProtocolIdentifying clinically applicable machine learning algorithms for glioma segmentation: recent advances and discoveries
Tillmanns N, Lum AE, Cassinelli G, Merkaj S, Verma T, Zeevi T, Staib L, Subramanian H, Bahar RC, Brim W, Lost J, Jekel L, Brackett A, Payabvash S, Ikuta I, Lin M, Bousabarah K, Johnson MH, Cui J, Malhotra A, Omuro A, Turowski B, Aboian MS. Identifying clinically applicable machine learning algorithms for glioma segmentation: recent advances and discoveries. Neuro-Oncology Advances 2022, 4: vdac093. PMID: 36071926, PMCID: PMC9446682, DOI: 10.1093/noajnl/vdac093.Peer-Reviewed Original ResearchGlioma segmentationResearch algorithmSegmentation of gliomasHigh accuracy resultsML algorithmsApplicable machineAccuracy resultsTCIA datasetSegmentationAlgorithmMachinePatient dataSystematic literature reviewOverfittingData extractionDatasetBratDatabaseRecent advancesResearch literatureLimitationsExtractionCurrent research literatureMethod
2020
Machine Learning Decision Tree Models for Differentiation of Posterior Fossa Tumors Using Diffusion Histogram Analysis and Structural MRI Findings
Payabvash S, Aboian M, Tihan T, Cha S. Machine Learning Decision Tree Models for Differentiation of Posterior Fossa Tumors Using Diffusion Histogram Analysis and Structural MRI Findings. Frontiers In Oncology 2020, 10: 71. PMID: 32117728, PMCID: PMC7018938, DOI: 10.3389/fonc.2020.00071.Peer-Reviewed Original ResearchDecision tree modelDifferent machineTree modelAccurate classification rateAveraged AUCClassification algorithmsTraining datasetRandom forestDecision treeClassification rateRandom forest modelMachineAlgorithmTerminal nodesHigh accuracyForest modelDecision modelHistogram analysisDichotomized classificationClassificationIntra-axial posterior fossa tumorsAccuracyDatasetGreater accuracyNodes
2019
Diffusion tensor tractography in children with sensory processing disorder: Potentials for devising machine learning classifiers
Payabvash S, Palacios EM, Owen JP, Wang MB, Tavassoli T, Gerdes M, Brandes-Aitken A, Marco EJ, Mukherjee P. Diffusion tensor tractography in children with sensory processing disorder: Potentials for devising machine learning classifiers. NeuroImage Clinical 2019, 23: 101831. PMID: 31035231, PMCID: PMC6488562, DOI: 10.1016/j.nicl.2019.101831.Peer-Reviewed Original ResearchConceptsPosterior white matter tractsSupport vector machineAccurate classification rateNaïve BayesDifferent machineNeural networkVector machineRandom forestClassification rateRandom forest modelMachineEdge densityConnectivity metricsAlgorithmDTI/High accuracyForest modelMetricsAccuracyBrain's inabilityBayesClassifierNetworkSensory processing disordersClassification
2018
A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: Evaluating vascular injury and data labelling for machine learning
Morrison MA, Payabvash S, Chen Y, Avadiappan S, Shah M, Zou X, Hess CP, Lupo JM. A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: Evaluating vascular injury and data labelling for machine learning. NeuroImage Clinical 2018, 20: 498-505. PMID: 30140608, PMCID: PMC6104340, DOI: 10.1016/j.nicl.2018.08.002.Peer-Reviewed Original ResearchConceptsData labelingTraining dataHigh-level feature extractionVolume segmentationComputer-aided detection algorithmComputer-aided detection methodsGround truth labelingCerebral microbleed detectionFalse positivesMachine learningFeature extractionSegmentation resultsDetection algorithmSophisticated machineTime usersAlgorithm performanceCMB detectionComputer aidMicrobleed detectionSegmentationTest setDetection methodSuperior performanceExtensive research effortsMachine